Why Anthracotheroides had Faced Family Level Extinction: Enamel Hypoplasia an Answer to the Question

  • Rana Manzoor Ahmad
  • Abdul Majid KhanEmail author
  • Amtur Rafeh
  • Ayesha Iqbal
  • Ghazala Roohi
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


The extinction of the Siwalik anthracotheroides is a family level extinction. In order to point out the possible causes of this extinction the occurrence of enamel hypoplasia is compared in 848 teeth of 487 extinct animals belonging to 39 species of 7 Siwalik artiodactyle families. The stratigraphic range of the analyzed material is from early Miocene-Pleistocene. The results show that the occurrence of enamel hypoplasia is in highest percentage in anthracotheroides among the Siwalik artiodactyle families and occurrence of enamel hypoplasia is also high in the anthracotheroides throughout their stratigraphic range in the Siwalik region. The high occurrence of enamel hypoplasia means high level of ecological stress faced by an animal so the current enamel hypoplasia analysis results indicate that the anthracotheroides had faced the highest ecological stress among all the Siwalik artiodactyls. The cumulative effect to these unfavorable ecological conditions might be the cause to this family level extinction.


Stress Ameloblast Dental defect Climatic changes Artiodactyls 


  1. Barry, J.C., Morgan, M.E., Flynn, L.J., Pilbeam, D., Behrensmeyer, A.K., Raza, S.M., Khan, I.A., Badgley, C., Hicks, J., Kelley, J.: Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiol. Mem. 28(3), 1–72 (2002)Google Scholar
  2. Black, C.C.: A new species of Merycopotamus (Artiodactyla: Anthracotheriidae) from the late Miocene of Tunisia. Notes du Service de Géologie de Tunisie 37, 5–39 (1972)Google Scholar
  3. Colbert, E.H.: Siwalik mammals in the American Museum of natural history. Trans. Am. Philos. Soc. 26, 1–401 (1935)CrossRefGoogle Scholar
  4. Federation Dentaire International.: An epidemiological index of developmental defects of dental enamel (DDE Index). Int. Dent. J. 32, 159–167 (1982)Google Scholar
  5. Franz-Odendaal, T.A., Chinsamy, A., Lee-Thorp, J.: High prevalence of enamel hypoplasia in an early Pliocene giraffid (Sivatherium hendeyi) from South Africa. J. Vert. Paleontol. 24(1), 235–244 (2004)Google Scholar
  6. Gaziry, A.W.: Merycopotamus petrocchii (Artiodactyla, Mammalia) from Sahabi, Libya. In: Boaz, N., Arnauti, E.L., Gaziry, A.W., de Heinzelin, J., Boaz, D. (eds.) Neogene paleontology and geology of Sahabi, pp. 287–302. New York, NY, Allan Liss (1987)Google Scholar
  7. Goodman, A.H., Rose, J.C.: Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Year b Phys. Anthropol. 33(11 Suppl), 59–110 (1990)CrossRefGoogle Scholar
  8. Goodman, A.H., Rose, J.C.: Dental enamel hypoplasias as indicators of nutritional status. In: Kelly, M.,Larsen, C. (eds.) Advances in Dental Anthropology, pp. 279–293, New York, Wiley-Liss (1991)Google Scholar
  9. Goodman, A.H., Armelagos, G.J., Rose, J.C.: Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980)Google Scholar
  10. Gratiollet, L.P.: Recherches sur l’anatomie de l’hippopotame, p. 405. Masson et fils, Paris (1867)Google Scholar
  11. Hillson, S.: Teeth 1st ed. Cambridge University Press, Cambridge (1986)Google Scholar
  12. Khan, A.M., Cerdeno, E., Akhtar, M., Khan, M.A., Iqbal, A., Mubashir, M.: New fossils of Gaindatherium (Rhinocerotidae, Mammalia) from the Middle Miocene of Pakistan. Turkish J. Earth. Sci. 23(4), 452–461 (2014)CrossRefGoogle Scholar
  13. Lihoreau, F., Barry, J., Blondel, C., Chaimanee, Y., Jaeger, J.J., Brunet, M.: Anatomical revision of the genus Merycopotamus (Artiodactyla; Anthracotheriidae): its significance for Late Miocene mammal dispersal in Asia. Palaeontology 50(2), 503–524 (2007)CrossRefGoogle Scholar
  14. Lihoreau, F.: Systématique et paléoécologie des Anthracotheriidae [Artiodactyla; Suiformes] du Mio-Pliocène de l’Ancien Monde: implications paléobiogéographiques, p. 396. Ph.D. thesis, Université de Poitiers (2003)Google Scholar
  15. Mead, A.J.: Enamel hypoplasia in Miocene rhinoceroses (Teleoceras) from Nebraska: evidence of severe physiological stress. J. Vert. Paleontol. 19(2), 391–397 (1999)Google Scholar
  16. Quade, J., Cerling, T.E., Bowman, J.R.: Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342(6246), 163–166 (1989)CrossRefGoogle Scholar
  17. Skinner, M., Goodman, A.H.: Anthropological uses of developmental defects of enamel. In Saunders, S.R., Katzenberg, M.A. (eds.) Skeletal Biology of Past Peoples: Research Methods, pp. 153–174, Wiley-Liss, Inc., New York (1992)Google Scholar
  18. Suckling, G.W.: Developmental defects of enamel—historical and present-day perspectives of their pathogenesis. Adv. Dent. Res. 3(2), 87–94 (1989)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rana Manzoor Ahmad
    • 1
  • Abdul Majid Khan
    • 1
    Email author
  • Amtur Rafeh
    • 1
  • Ayesha Iqbal
    • 1
  • Ghazala Roohi
    • 2
  1. 1.Department of ZoologyUniversity of the PunjabLahorePakistan
  2. 2.Pakistan Museum of Natural History (PMNH)IslamabadPakistan

Personalised recommendations