Advertisement

Exploring Ecology and Associated Disease Pattern

  • Gouri Sankar BhuniaEmail author
  • Pravat Kumar Shit
Chapter

Abstract

Globalization, climate change, unstable weather condition, pathogen evaluations, drug and insecticide confrontation, growing vector habitat and populations, and the deficiency of preventive measures have eradicated barriers and fortified the emergence and reemergence of vector-borne diseases. The prolific appreciation and usage of emerging infectious diseases is becoming a hostile task. Ecological aspects habitually precipitate occurrence by retaining people in contact with a natural reservoir or host for an contagion before unacquainted but typically existent either by increasing immediacy or by changing circumstances so as to errand an increased population of the microbe or its natural host. The human ecology of disease is hesitant with the habits of social comportments, in its cultural and socio-economic circumstances, intermingles with environmental surroundings to produce or avert disease among predisposed people. The wider use of Remote sensing (RS) and Geographic Information Systems (GIS) is needed to delineate the abiotic and biotic environmental variables for the study of disease transmission modelling and identification of habitat niches of the vector. A case study was conducted to understand the correlation between geo-environmental factors and Phelobotomus argentipes abundance.

References

  1. Adda J (2015) Economic activity and the spread of viral diseases: evidence from high frequency data. IZA DP No. 9326. ftp.iza.org/dp9326.pdf
  2. Adler S, Theodor O (1957) Transmission of disease agents by phlebotomine sand flies. Ann Rev Entomol 2:203–225CrossRefGoogle Scholar
  3. Anon (1993) Proceedings of Workshops on Entomological and Vector Control of Kala-azar. Delhi: National Institute of Communicable Diseases (Directorate General of Health Services)Google Scholar
  4. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12:313–329CrossRefGoogle Scholar
  5. Bana e Costa CA, De Corte JM, Vansnick JC (2005) On the mathematical foundation of MACBETH. In: Multiple criteria decision analysis: state of the art surveys. In: Figueira J, Salvatore G, Ehrgott M (eds) Springer, Berlin Heidelberg: New York, NY, USA, pp 409–442Google Scholar
  6. Beck LR, Lobitz BM, Wood BL, Wood LW (2000) Remote sensing and human health: new sensors and new opportunities. Emerg Inf Dis 6:217–226CrossRefGoogle Scholar
  7. Belward AS, de Hoyos A (1987) A comparison of supervised maximum likelihood and decision tree classification for crop cover estimation from multitemporal LANDSAT MSS data. Int J Remote Sens 8(2):229–235CrossRefGoogle Scholar
  8. Benkova I, Volf P (2007) Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol 44(1):150–154CrossRefGoogle Scholar
  9. Bethesda: National Institutes of Health (US) (2007) Understanding emerging and re-emerging infectious diseases. http://www.ncbi.nlm.nih.gov/books/NBK20370/
  10. Bhunia GS, Chatterjee N, Kumar V, Mandal R, Das P, Kesari S (2012a) Remote sensing and GIS: tools for the prediction of epidemic for the intervention measure. India Geospatial Forum 2012–14th annual international conference and exhibition on geospatial information technology and applications, held on 7–9 February, 2012 at Epicentre, Apparel House, Gurgoan, IndiaGoogle Scholar
  11. Bhunia GS, Chatterjee N, Kumar V, Siddiqui NA, Mandal R, Das P, Kesari S (2012b) Delimitation of Kala-azar risk areas in the district of Vaishali in Bihar (India) using a geo-environmental approach. Mem Inst Oswaldo Cruz 107(5):609–620CrossRefGoogle Scholar
  12. Bhunia GS, Kesari S, Chatterjee N, Kumar V, Das P (2012c) Localization of Kala-azar in the endemic region of Bihar, India based on land use/land cover assessment at different scales. Geospat Health 6(2):177–193CrossRefGoogle Scholar
  13. Bhunia GS, Kesari S, Chatterjee N, Pal DK, Kumar V, Ranjan A, Das P (2011) Incidence of visceral leishmaniasis in the Vaishali district of Bihar, India: spatial patterns and role of inland water bodies. Geospat Health 5(2):205–15CrossRefGoogle Scholar
  14. Bhunia GS, Kesari S, Jeyaram A, Kumar V, Das P (2010a) Influence of topography on the endemicity of Kala-azar: a study based on remote sensing and geographical information system. Geospat Health 4(2):155–165CrossRefGoogle Scholar
  15. Bhunia GS, Kumar V, Kumar AJ, Das P, Kesari S (2010b) The use of remote sensing in the identification of the eco-environmental factors associated with the risk of human visceral leishmaniasis (Kala-azar) on the Gangetic plain, in north-eastern India. Ann Trop Med Parasitol 104(1):35–53CrossRefGoogle Scholar
  16. Bora D (1999) Epidemiology of visceral leishmaniasis in India. Nat Med J India 12(2):62–68Google Scholar
  17. Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE (2007) Persistence of H5 and H7 avian influenza viruses in water. Avian Dis 51:285–289CrossRefGoogle Scholar
  18. Bucheton B, Kheir MM, El-Safi SH, Hammad A, Mergani A, Mary C, Abel L, Dessein A (2002) The interplay between environmental and host factors during an outbreak of visceral leishmaniasis in eastern Sudan. Microbes Infect 4:1449–1457CrossRefGoogle Scholar
  19. Butler JC et al (2001) Emerging infectious diseases among indigenous peoples. Emerg Infect Dis 7(suppl.):554–555CrossRefGoogle Scholar
  20. CDC (2009) Swine Influenza A (H1N1) Infection in Two Children—Southern California, MMWR 58(15):400–402. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5815a5.htm
  21. Centers for Disease Control and Prevention (1994) Addressing emerging infectious disease threats: a preventionstrategy for the United States. U.S. Department of Health and Human Services, Public HealthService, AtlantaGoogle Scholar
  22. Chua KB et al (2000) Nipah virus: a recently emergent deadly paramyxo virus. Science 288:1432–1435CrossRefGoogle Scholar
  23. Chua K, Chua B, Wang C (2002) Anthropogenic deforestation, El Nin˜o and the emergence of Nipah virus in Malaysia. Malay J Pathol 24:15–21Google Scholar
  24. Colacicco-Mayhugh, MG, Masuoka, PM, Grieco, JP (2010) Ecological niche model of Phlebotomusalexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int J Health Geogr 9(2):1–9CrossRefGoogle Scholar
  25. Congalton RG (1991) A review of assessing the accuracy of classifications of remote sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  26. Connor SJ, Thomson MC, Flasse SP, Williams JB (1995) The use of low-cost remote sensing and GIS for identifying and monitoring the environmental factors associated with vector borne disease transmission. Available from: http://www.idrc.ca/...oks/285-6/index.html#page_75
  27. Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH et al (2009) Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol 9:16CrossRefGoogle Scholar
  28. Crist EP, Cicone RC (1984) Application of Tasseled cap concept to simulated thematic mapper data. Photogramm Eng Remote Sens 50:343–352Google Scholar
  29. Crist EP, Laurin R, Ciccone RC (1986) Vegetation and soils information contained in transformed thematic mapper data. In: Proceedings of IGARSS’86 Symposium, Zurich, Switzerland, 8–11 September 1986; pp 1465–1470Google Scholar
  30. Cross ER, Newcomb WW, Tucker CJ (1996) Use of weather data and remote sensing to predict the geographic and seasonal distribution of phlebotomus papatasi in Southwest Asia. Am J Trop Med Hyg 54:330–332CrossRefGoogle Scholar
  31. Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116CrossRefGoogle Scholar
  32. De Sherbinin A, Carr D, Cassels S, Jiang L (2007) Population and environment. Annu Rev Environ Resour 32:345–373CrossRefGoogle Scholar
  33. Dedet JP, Pratlong F (2008) Leishmaniasis. In: Manson’s tropical diseases 22nd ed. Cook GC, Zumla A, editors. Saunders Elsevier Edinburgh, pp 1341–1365Google Scholar
  34. Dhima RC, Dinesh DS (1992) An experimental study to find out the source of fructose to sandflies. Indian J Parasitol 16:159–160Google Scholar
  35. Dinesh DS, Dhima RC (1991) Plant source of fructose to sandflies, particularly Phlebotomus argentipes in nature. J Commun Dis 23:160–161Google Scholar
  36. Dunlop S (2003) The weather identification handbook: the ultimate guide for weather watchers. The Lyons Press, ISBN 1585748579. pp 395–439Google Scholar
  37. El Said S, Beier JC, El Sawaf BM, Doha S, El Kordy E (1986) Sand flies (Diptera: Psychodidae) associated with visceral leishmaniasis in El Agamy, Alexandria Governorate, Egypt II. Field Behav J Med Entomol 23(6):609–615CrossRefGoogle Scholar
  38. Eldridge BF (2005) Mosquitoes, the Culicidae. Biology of Disease Vectors. W.C. Marquardt. San Diego, Elsevier, pp 95–111Google Scholar
  39. Elnaiem DA, Connor SJ, Thomson MC, Hassan MM, Hassan HK, Aboud MA, Ashford RW (1998) Environmental determinants of the distribution of phlebotomus orientalis in Sudan. Ann Trop Med Parasitol 92:877–887CrossRefGoogle Scholar
  40. Elnaiem DA, Hassan HK, Ward RD (1997) Phlebotomine sand-flies in a focus of visceral leishmaniasis in a border area of eastern Sudan. Ann Trop Med Parasitol 91:307–318CrossRefGoogle Scholar
  41. Elnaiem DA, Schorscher J, Bendall A, Obsomer V, Osman ME, Mekkawi AM, Connor SJ, Ashford RW, Thomson MC (2003) Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of Kala-azar in Eastern Sudan. Am J Trop Med Hyg 68(1):10–17CrossRefGoogle Scholar
  42. Faucher B, Gaudart J, Faraut F, Pomares C, Mary C, Marty P, Piarroux R (2012) Heterogeneity of environments associated with transmission of visceral leishmaniasis in South-Eastern France and implication for control strategies. PLoS Negl Trop Dis 6(8):e1765.  https://doi.org/10.1371/journal.pntd.0001765CrossRefGoogle Scholar
  43. Feliciangeli MD, Delgado O, Suarez B, Bravo A (2006) Leishmania and sand flies: proximity to woodland as a riskfactor for infection in a rural focus of visceral leishmaniasis inwest central Venezuela. Trop Med Int Health 11:1785–1791CrossRefGoogle Scholar
  44. Ferro CE, Cardenas D, Corredor A, Munstermann LE (1998) Life cycle and fecundity analysis of Lutzomyia shannoni (Dyar) (Diptera: Psychodidae). Mem Inst Oswaldo Cruz 93:195–199CrossRefGoogle Scholar
  45. Gage KL, Burkot TR, Eisen RJ, Hayes EB (2008) Climate and vector borne diseases. Am J Prev Med 35(5):436–450CrossRefGoogle Scholar
  46. Gálvez R, Descalzo MA, Miró G, Jiménez MI, Martín O, Dos Santos-Brandao F, Guerrero I, Cubero E, Molina R (2010) Seasonal trends and spatial relations between environmental/meteorological factors and leishmaniosis sand fly vector abundances in Central Spain. Acta Trop 115:95–102CrossRefGoogle Scholar
  47. Gebre-Michael T, Malone JB, Balkew M, Ali A, Berhe N, Hailu A, Herzi AA (2004) Mapping the potential distribution of Phlebotomus martini and P. orientalis (Diptera: Psychodidae), vectors of Kala-azar in East Africa by use of geographic information systems. Acta Tropica 90(1):73–86CrossRefGoogle Scholar
  48. Ghosh K, Mukhopadhyay J, Desai MM, Senroy S, Bhattacharya A (1999) Population ecology of phlebotomus argentipes (Diptera: Psychodidae) in West Bengal. India. J Med Entomol 36(5):588–594CrossRefGoogle Scholar
  49. Gould P (1993) The slow plague: Geography of the AIDS pandemic. Cambridge: Blackwell PublishersGoogle Scholar
  50. Gubler DJ (1991) Insects in disease transmission. Hunter Tropical Medicine. G. T.Strickland. Philadelphia, W. B. Saunders, pp 981–1000Google Scholar
  51. Guerrant RL, Blackwood BL (1999) Threats to global health and survival: the growing crises of tropicalinfectious diseases—an “unfinished” agenda. Clin Infect Dis 28:966–986CrossRefGoogle Scholar
  52. Hansen AJ, Knight RL, Marzluff JM, Powell S, Brown K, Gude PH, Jones A (2005) Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecol Appl 15:1893–1905CrossRefGoogle Scholar
  53. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP (2002) Climate warming and disease risks for terrestrial and marine biota. Sci 296:2158–2162CrossRefGoogle Scholar
  54. Hay SI, Battle KE, Pigott DM, Smith DL, Moves CL, Bhatt S, Brownstein JS, Collier N, Myers MF, George DB, Gething PW (2013) Global mapping of infectious disease. Philos Trans R SocLond B BolSci 368 (1614):20120250CrossRefGoogle Scholar
  55. Hay SI, Tucker CJ, Rogers DJ, Packer MJ (1996) Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann Trop Med Parasitol 90:1–19CrossRefGoogle Scholar
  56. Herbreteau V, Salem G, Souris M, Hugot JP, Gonzalez JP (2005) Sizing up human health through remote sensing: uses and misuses. Parassitologia 47:63–79Google Scholar
  57. Hermeto MV, Dias DV, Genaro O, Rotondo-Silva A, Costa CA, Toledo VPCP, Michalick MSM, Williams P, Mayrink W (1994) Outbreak of cutaneous leishmaniasis in the Rio Doce valley, Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 89:519–521CrossRefGoogle Scholar
  58. Hongoh V, Hoen AG, Aenishaenslin C, Waaub JP, Bélanger D, Michel P (2011) The lyme-MCDA consortium spatially explicit multi-criteria decision analysis for managing vector-borne diseases. Int J Health Geogr 10:70.  https://doi.org/10.1186/1476-072x-10-70CrossRefGoogle Scholar
  59. Høye TT, Forchhammer MC (2008) The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations. BMC Ecol 8(1):8CrossRefGoogle Scholar
  60. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is richin parasites? Trends Ecol Evol 21:381–385CrossRefGoogle Scholar
  61. Joshi S, Bajracharya BL, Baral MR (2006) Kala-azar (visceral leishmaniasis) from Khotang. Kathmandu Univ Med J 4:232–234Google Scholar
  62. Kaburi JC, Ngumbi PM, Anjili CO (2011) Sandfly-saliva injected during repeated feeding on a sensitized hamster causes fecundity and mortality to female Phlebotomus duboscqi (Diptera: Psychodidae). J Vect Borne Dis 48:61–63Google Scholar
  63. Kalluri S, Gilrut P, Rogers D, Zzczur M (2007) Surveillence of arthroprod vector borne infectious disease using remote sensing techniques: a review. PLoS Pathog 3:1361–1371CrossRefGoogle Scholar
  64. Kamdem C, Fossog BT, Simard F, Etouna J, Ndo C, Kengne P et al (2012) Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLoS One 7(6):e39453CrossRefGoogle Scholar
  65. Karl TR (2003) Modern global climate change. Sci 302(5651):1719–1723CrossRefGoogle Scholar
  66. Kassem HA, Siri J, Kamal HA, Wilson ML (2012) Environmental factors underlying spatial patterns of sand flies (Diptera: Psychodidae) associated with leishmaniasis in southern Sinai. Egypt Acta Trop 123(1):8–15CrossRefGoogle Scholar
  67. Kesari S, Bhunia GS, Kumar V, Jeyaram, Ranjan A, Das P (2010) Study of house-level risk factors associated in the transmission of Indian Kala-azar. Parasit Vectors 3:94.  https://doi.org/10.1186/1756-3305-3-94CrossRefGoogle Scholar
  68. Kesari S, Bhunia GS, Kumar V, Jeyaram A, Ranjan A, Das P (2011) A comparative evaluation of endemic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology. Mem Inst Oswaldo Cruz, Rio de Janeiro, 106(5):515–523Google Scholar
  69. Kesari S, Palit A, Kishore K (1992) Study of breeding habitats of sandflies preliminary approach. J Commun Dis 24:62–63Google Scholar
  70. Killick-Kendrick R (1983) Investigation of Phlebotomine sandflies. In: Lumsden WHR, Evans DA Biology of the kinetoplastide, vol 2, London, Academic PressGoogle Scholar
  71. Kim KS, Beresford RM, Henshall WR (2007) Prediction of disease risk using site-specific estimates of weather variables. New Zealand Plant Protect 60:128–132Google Scholar
  72. Krishnaswamy J, Bawa KS, Ganeshaiah KN, Kiran MC (2009) Quantifying and mapping biodiversity and ecosystem services: utility of a multi-season NDVI based Mahalanobis distance surrogate. Remote Sens Environ 113(4):857–867CrossRefGoogle Scholar
  73. Kumar V, Kesari S, Dinesh DS, Tiwari AK, Kumar AJ, Kumar R, Singh VP, Das P (2015) A report on the indoor residual spraying (IRS) in the control of Phlebotomus argentipes, the vector of visceral leishmaniasis in Bihar (India): an initiative towards total elimination targeting 2015 (Series-1). J Vect Borne Dis 46:225–229Google Scholar
  74. Kumar V, Kesari S, Kumar AJ, Dinesh DS, Ranjan A, Prasad M, Sinha NK, Kumar R, Das P (2009) Vector density and the control of Kala-azar in Bihar, India. MemInstOswaldo Cruz, Rio de Janeiro 104(7):1019–1022CrossRefGoogle Scholar
  75. Lacaux JP, Tourre YM, Vignolles C, Ndione JA, Lafaye M (2007) Classification of ponds from high-spatial resolution remote sensing: application to Rift Valley fever epidemics in Senegal. Remote Sens Environ 106:66–74CrossRefGoogle Scholar
  76. Leica Geosystems (2008) Leica geosystems geospatial imaging ERDAS IMAGINE® 9.2. Norcross, USAGoogle Scholar
  77. Lewis DJ (1971) Phlebotomid sandflies. Bull World Health Org 44:535–551Google Scholar
  78. Lewis DJ (1978) The phlebotomine sand flies (Diptera: Psychodidae) of the oriental region. Bull British Museum Nat Hist Entomol 37:217–343Google Scholar
  79. Li ZL, Becker F (1993) Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens Environ 43:67–85CrossRefGoogle Scholar
  80. Lindgren E, Gustafson R (2001) Tick-borne encephalitis in Sweden and climate change. Lancet 358(9275):16–18CrossRefGoogle Scholar
  81. Lunetta RS, Elvidge CD (1998) Remote sensing change detection. MI: Ann Arbor Press. Magill AJ (1995) Epidemiology of the leishmaniases. Dermatol Clin 13(3):505–523Google Scholar
  82. Malone JB, Huh OK, Fehler DP et al (1994) Temperature data from satellite imagery and the distribution of schistosomiasis in Egypt. Am J Trop Med Hyg 50:714–722CrossRefGoogle Scholar
  83. Malone JB, Yilma JM, McCarroll JC, Erko B, Mukaratirwa S, Zhou X (2001) Satellite climatology and the environmental risk of Schistosoma mansoni in Ethiopia and east Africa. Acta Trop 79:59–72CrossRefGoogle Scholar
  84. Markham BL, Storey JC, Williams DL, Irons JR (2004) Landsat sensor performance: history and current status. IEEE Trans Geosci Remote Sens 42(12):2691–2694CrossRefGoogle Scholar
  85. Martin LB, Hopkins WA, Mydlarz LD, Rohr JR (2010) The effects of anthropogenic global changes on immune functions and disease resistance. Acad Sci 1195:129–148CrossRefGoogle Scholar
  86. McMichael AJ (2004) Environmental and social influences on emerging infectious diseases: past, present and future. Phil Trans R Soc Lond B 359:1049–1058CrossRefGoogle Scholar
  87. McMichael AJ (2015) Extreme weather events and infectious disease outbreaks. Virulence 6(6):543–7CrossRefGoogle Scholar
  88. McMichael AJ, Bouma MJ (2000) Global changes, invasive species and human health. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington DC, pp 191–210Google Scholar
  89. Meade MS, Florin JW, Gesler WM (1988) Medical geography. The Guilford Press, New YorkGoogle Scholar
  90. Moore JS, Kelly TB, Killick-Kendrick R, Killick-Kendrick M, Wallbanks R, Molyneux DH (1987) Honeydew sugars in wild-caught Phlebotomusariasi detected by high performance liquid chromatography (HPLC) and gas chromatography (GC). Med Vet Entomol 1:427–434CrossRefGoogle Scholar
  91. Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging andre-emerging infectious diseases. Nature 430:242–249CrossRefGoogle Scholar
  92. Morse SS (1995) Factors in the emergence of infectious diseases. Emerg Infect Dis 1(1):7–15CrossRefGoogle Scholar
  93. Morse SS, Schluederberg A (1990) Emerging viruses: the evolution of viruses and viral diseases. J Infect Dis 162:1–7CrossRefGoogle Scholar
  94. Moser W, Greter H, Schindler C, Allan F, Ngandolo BN, Moto DD, Utzinger J, Zinsstag J (2014) The spatial and seasonal distribution of Bulinustruncatus, Bulinusforskalii and Biomphalariapfeifferi, the intermediate host snails of schistosomiasis, in N’Djamena. Chad Geospat Health 9(1):109–118CrossRefGoogle Scholar
  95. Mukhopadhyay AK, Rahman SJ, Chakravarty AK (1990) Effects of flood control on immature stages of sandflies in flood prone Kala-azar endemic villages of North Bihar, India. WHO/VBC.90:986Google Scholar
  96. Müller GC, Schlein Y (2006) Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36:1077–1080CrossRefGoogle Scholar
  97. Murdock CC, Paaijmans KP, Cox-Foster D, Read AF, Thomas MB (2012) Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nature Rev Microbiol 10:869–876CrossRefGoogle Scholar
  98. Napier LE (1926) An epidemiological consideration of the transmission of Kala-azar in India. India Med Res Memoir 4:219–265Google Scholar
  99. Napier LE (1962) An epidemiological consideration of the transmission of Kala-azar in India. India Med Res Memoir. 4:219–265Google Scholar
  100. Napier LE, Smith ROA (1926) A study of the bionomics of Phlebotomusargentipes, with special reference to the conditions in Calcutta. Indian Med Res Mem 4:161–172Google Scholar
  101. Nieto P, Malone JB, Bavia ME (2006) Ecological niche modeling for visceral leishmaniasis in the state of Bahia, Brazil, using genetic algorithm for rule-set prediction and growing degree day-water budget analysis. Geospatial Health 1:115–126CrossRefGoogle Scholar
  102. Nizeyi JB, Mwebe R, Nanteza A, Cranfeld MR, Kalema GRNN, Graczyk TK (1999) Cryptosporidium sp. and Giardia sp. Infections in Mountain Gorillas (Gorilla gorilla beringei) of the Bwindi Impenetrable National Park, Uganda. J Parasitol 85(6):1084–1088CrossRefGoogle Scholar
  103. Nurminen M, Nurminen T, Corvalan CF (1999) Methodologic issues in epidemiologic risk assessment. Epidemiology 10(5):585–593CrossRefGoogle Scholar
  104. Odiit M, Bessell PR, Fèvre EM, Robinson T, Kinoti J, Coleman PG, Welburn SC, McDermott J, Woolhouse MEJ (2006) Using remote sensing and geographic information systems to identify villages at high risk for rhodesiense sleeping sickness in Uganda. Trans R Soc Trop Med Hyg 100:354–362CrossRefGoogle Scholar
  105. Ostyn B, Vanlerberghe V, Picado A, Dinesh DS, Sundar S, Chappuis F, Rijal S, Dujardin JC, Coosemans M, Boelaert M, Davies C (2008) Vector control by insecticide-treated nets in the fight against visceral leishmaniasis in the Indian subcontinent, what is the evidence? Trop Med Int Health. 13(8):1073–1085CrossRefGoogle Scholar
  106. Ozer N (2005) Emerging vector-borne diseases in a changing environment. Turkish J Biol 29:125–135Google Scholar
  107. Patz J, Confalonieri UEC (2005) Ecosystem regulation of infectious diseases Conditions and Trends. Millenn Ecosyst Assess, Island Press, Washington, pp 391–415Google Scholar
  108. Patz J, Wolfe N (2002) Global ecological change and human health. In: Conservation medicine: ecological health in practice (ed) Aguirre A, Ostfeld R, Tabor G, House C, Pearl M), pp 167–181. Oxford University PressGoogle Scholar
  109. Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405CrossRefGoogle Scholar
  110. Pavlovsky EN (1966) The natural nidality of transmissible disease (N.D. Levine, ed.). University of Illinois Press, UrbanaGoogle Scholar
  111. Peterson AT, Martinez-Campos C, Nakazawa Y, Martinez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 99(9):647–655CrossRefGoogle Scholar
  112. Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements ACA (2008) Spatial analysis in epidemiology. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  113. Picado A, Das ML, Kumar V, Dinesh DS, Rijal S et al (2010a) Phlebotomus argentipes seasonal patterns in India and Nepal. J Med Entomol 47(2):283–6CrossRefGoogle Scholar
  114. Picado A, Murari LD, Vijay K, Diwakar SD, Suman R, Shri PS, Pradeep D, Marc C, Marleen B, Clive D (2010b) Phlebotomusargentipes seasonal patterns in India and Nepal. J Med Entomol 47(2):283–286CrossRefGoogle Scholar
  115. Picado A, Singh SP, Rijal S, Sundar S, Ostyn B, Chappuis F, Uranw S, Gidwani K, Khanal B, Rai M, Paudel IS, Das ML, Kumar R, Srivastava P, Dujardin JC, Vanlerberghe V, Andersen AW, Davies CR, Boelaert M (2010) Longlasting insecticidal nets for prevention of Leishmania donovani infection in India and Nepal: paired cluster randomised trial. British Med J 341.  https://doi.org/10.1136/bmj.c6760CrossRefGoogle Scholar
  116. Povoa M, Wirtz R, Lacerda R, Miles M, Warhurst D (2001) Malaria vectors in the municipality of Serra do Navio, State of Amapa, Amazon Region. Brazil Mem Inst Oswaldo Cruz 96:179–184CrossRefGoogle Scholar
  117. Qiu ZY, Li J, Guo HJ (1998) Application of remote sensing technique. Wuhan University Press, Wuhan, China, pp 97–98Google Scholar
  118. Quintana MG, Fernández MS, Salomón OD (2012) Distribution and abundance of phlebotomine, vectors of Leishmaniasis, in Argentina: spatial and temporal analysis at different scales. J Tropical Med.  https://doi.org/10.1155/2012/652803CrossRefGoogle Scholar
  119. Rahman A (2008) Climate change and its impact on health in Bangladesh. Reg Health Forum 12:16–26. http://www.searo.who.int/LinkFiles/Regional_Health_Forum_Volume_12_No_1_Climate_change_and_its_impact.pdf
  120. Rahman KM, Islam S, Rahman MW et al (2010) Increasing incidence of post-Kala-azar dermal leishmaniasis in a population-based study in Bangladesh. Clin Infect Dis 50(1):73–76CrossRefGoogle Scholar
  121. Raina S, Mahesh DM, Kaul R, Satinder KS, Gupta D, Sharma A, Thakur S (2009) A new focus of visceral leishmaniasis in the Himalayas. India. J Vect Borne Dis 46:303–306Google Scholar
  122. Rakotomanana F, Randremanana RV, Rabarijaona LP, Duchemin JB, Ratovonjato J, Ariey F, Rudant JP, Jeanne I (2007) Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar. Int J Health Geogr 6:2.  https://doi.org/10.1186/1476-072x-6-2CrossRefGoogle Scholar
  123. Ramasamy R, Surendran SN (2016) Mosquito vectors developing in atypical anthropogenic habitats: global overview of recent observations, mechanisms and impact on disease transmission. J Vect Borne Dis 53:91–98Google Scholar
  124. Ranjan A, Sur D, Singh VP, Siddique NA, Manna B, Lal CS, Sinha PK, Kishore K, Bhattacharya SK (2005) Risk factors for Indian Kala-azar. Am J Trop Med Hyg 73(1):74–78CrossRefGoogle Scholar
  125. Raso G (2006) An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni—hookworm coinfection. In: Proceedings of the National Academy of Sciences of the USA, 103:6934–6939CrossRefGoogle Scholar
  126. Raulerson JT (2010) Singularities: technoculture, transhumanism, and science fiction in the 21st Century. PhD (Doctor of Philosophy) thesis, University of Iowa. http://ir.uiowa.edu/etd/2968
  127. Ready PD (2008) Leishmaniasis emergence and climate change. Rev Sci Tech Off Int Epiz 27(2):399–412CrossRefGoogle Scholar
  128. Rejmankova E, Savage PM, Rejmanek M, Arredondo JI, Roberts DR (1991) Multivariate analysis of relationships between habitats, environmental factors and occurence of Anopheline mosquito larvae Anopheles albimanus and A. pseudopunctipennis in Southern Chiapas. Mexico J Appl Ecol 28:827–841CrossRefGoogle Scholar
  129. Remaudière G (1992) A simplified method for mounting aphids and other small insects in Canada balsam. Rev Front Entomol 14:185–186Google Scholar
  130. Richards JA (1986) Remote sensing digital image analysis. Springer, BerlinCrossRefGoogle Scholar
  131. Rodo X, Pascual M, Fuchs G, Faruque AS (2002) ENSO and cholera: a non-stationary link related to climate change? In: Proceedings of the National Academy of Sciences (USA), 99:12901–12906CrossRefGoogle Scholar
  132. Rogers DI, Hay SI, Packer ML (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Tropical Med Parasitol 90:225–241CrossRefGoogle Scholar
  133. Rogers DJ, Randolph SE, Snow RW,  Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nat 415(6872):710–715CrossRefGoogle Scholar
  134. Rosenfield GH, Fitzpatrick L (1986) Kappa coefficient of agreement as a measure of thematic classification accuracy. Photogram Eng Remote Sens 52:223–227Google Scholar
  135. Roujean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51(3):375–384.  https://doi.org/10.1016/0034-4257(94)00114-3CrossRefGoogle Scholar
  136. Saaty TL (1980) The analytic hierarchy process, New York: McGraw Hill. International, Translated to Russian, Portuguese, and Chinese, Revised editions, Paperback (1996, 2000), Pittsburgh: RWS PublicationsGoogle Scholar
  137. Saaty TL (2005) The analytic hierarchy and analytic network process for the measurement of intangible criteria and for decision making. In: Figueira J, Salvatore G, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, Berlin Heidelberg: New York, NY, USA, pp 345–407Google Scholar
  138. Schlein Y, Jacobson RL (1999) Sugar meals and longevity of the sandfly Phlebotomus papatasi in an arid focus of Leishmania major in the Jordan Valley. Med Vet Entomol 13(1):65–71CrossRefGoogle Scholar
  139. Schlein Y, Warburg A (1986) Phytophagy and the feeding cycle of Phlebotomuspapatasi (Diptera: Psychodidae) under experimental conditions. J Med Entomol 23:11–15CrossRefGoogle Scholar
  140. Schmidt K, Ostfeld R (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619CrossRefGoogle Scholar
  141. Sharma VP (1995) Research on newer strategies for vector control. South-East Asia advisory committee on health research twenty-first session. SEA/ACHR/21/8, pp 10–13 April 1995. http://www.searo.who.int/LinkFiles/Technical_Documents_achr-21-8.pdf
  142. Sharma U, Singh S (2008) Insect vectors of Leishmania: distribution, physiology and their control. J Vect Borne Dis 45:255–272Google Scholar
  143. Silva F, Gomes R, Prates D, Miranda JC, Andrade B, Barral-Netto M, Barral A (2005) Inflammatory cell infiltration and high antibody production in BAL/c mice caused by natural exposure to Lutzomiya longipalpis bites. Am J Trop Med Hyg 72:94–98CrossRefGoogle Scholar
  144. Singh SM (1988) Brightness temperature algorithms for landsat thematic mapper data. Remote Sens Environ 24:509–512CrossRefGoogle Scholar
  145. Singh R, Lal S, Saxena VK (2008a) Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India. Acta Trop 107:117–120CrossRefGoogle Scholar
  146. Singh A, Roy SP, Kumar R, Nath A (2008b) Temperature and humidity play a crucial role in the development of P. argentipes. Journal of Ecophysiology& Occupational Health 8(1 & 2)Google Scholar
  147. Singh BB, Sharma R, Gill JPS, Aulakh RS, Banga HS (2011) Climate change, zoonoses and India. Rev Sci Tech Off Int Epiz 30(3):779–788CrossRefGoogle Scholar
  148. Sivagnaname N, Amalraj DD (1997) Breeding habitats of vector sandflies and their control in India. J Commun Dis 29:153–159Google Scholar
  149. Smith ROA (1959) Bionomics of P. argentipes. Bulletine of Calcutta School Trop Med 7: 19–21Google Scholar
  150. Sobrino JA, Jimenez-Munoza Paolini (2004) Land surface temperature retrieval from LANDSAT—TM 5. Remote Sens Environ 92:521–534CrossRefGoogle Scholar
  151. Soti V, Tran A, Bailly J-S, Puech C, Lo Seen D, Bégué A (2009) Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas. Int J Appl Earth Obs Geoinf 11:344–351CrossRefGoogle Scholar
  152. Stevens KB, Pfeiffer DU (2011) Spatial modelling of disease usingdata- and knowledge-driven approaches. Spat Spatio Temporal Epidemiol. 2:125–133CrossRefGoogle Scholar
  153. Sudhakar S, Srinivas T, Palit A, Kar SK, Bhattacharya SK (2006) Mapping of risk prone areas of Kala-azar (Visceral leishmaniasis) in parts of Bihar state, India: an RS and GIS approach. J Vect Borne Dis 43:115–122Google Scholar
  154. Thakur CP (2007) A new strategy for elimination of Kala-azar from rural Bihar. Indian J Med Res 126:447–451Google Scholar
  155. Thanyapraneedkul J, Muramatsu K, Daigo M (2009) Improvement accuracy of terrestrial NPP estimation using ADEOS-II/GLI data, pp 78–88. Available at: https://doors.doshisha.ac.jp/duar/repository/ir/18059/038010020007.pdf
  156. Theodor O (1936) On relationship of Phlebotomus papatasi to the temperature and humidity of the environment. Bull Entomol Res 27:653–671Google Scholar
  157. Thomson M, Indeje M, Connor S, Dilley M, Ward N (2003) Malaria early warning in Kenya and seasonal climate forecasts. The Lancet 362:580CrossRefGoogle Scholar
  158. Toumi A, Chlif S, Bettaieb J, Alaya NB, Boukthir A, Ahmadi ZE, Salah AB. (2012) Temporal Dynamics and Impact of Climate Factors on the Incidence of Zoonotic Cutaneous Leishmaniasis in Central Tunisia. PLoS Negl Trop Dis 6(5):e1633CrossRefGoogle Scholar
  159. Tsiko RG, Haile TS (2011) Integrating geographical information systems, fuzzy logic and analytical hierarchy process in modelling optimum sites for locating water reservoirs: a case study of the Debub District in Eritrea. Water 3:254–290.  https://doi.org/10.3390/w3010254CrossRefGoogle Scholar
  160. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150CrossRefGoogle Scholar
  161. Tucker CJ, Justice CO, Prince SD (1986) Monitoring the grasslands of the Sahel 1983-1985. Int J Remote Sens 7:1571–1582CrossRefGoogle Scholar
  162. Valenzuela GJ, Belkaid Y, Garfeild MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Libeiro JM (2001) Toward a defined anti-leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194:331–342CrossRefGoogle Scholar
  163. Valor E, Caselles V (1996) Mapping land surface emissivity from NDVI: applications to European, African, and South American areas. Remote Sens Environ 57:167–184CrossRefGoogle Scholar
  164. Van De Griend AA, Owe M (1993) On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int J Remote Sensing 14(6):1119–1131CrossRefGoogle Scholar
  165. Victora CG, Huttly SR, Fuchs SC, Olinto MT (1997) The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol 26:224–227CrossRefGoogle Scholar
  166. Wallis J, Lee K (1999) Primate conservation: the prevention of disease transmission. Int J Primatol 20:803–826CrossRefGoogle Scholar
  167. Waring S, Zakos-Feliberti A, Wood R, Stone M, Padgett P, Arafat R (2005) The utility of geographic information systems (GIS) in rapid epidemiological assessments following weather-related disasters: methodological issues based on the tropical storm allison experience. Int J Hyg Environ Health 208:109–116CrossRefGoogle Scholar
  168. Werneck GL (2008) Forum: geographic spread and urbanization of visceral leishmaniasis in Brazil. Introduct Cad Saúde Pública 24(12):2937–2940CrossRefGoogle Scholar
  169. Williams J (1997) The weather book, Vintage Books, ISBN 0–679-77, pp 665–666Google Scholar
  170. Woolhouse ME, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847CrossRefGoogle Scholar
  171. World Health Organization (1995) Communicable disease prevention and control: new, emerging, and re-emerging infectious diseases. WHO Doc. A48/15; Feb. 22Google Scholar
  172. World Health Organization (WHO) (2007) Guidelines and standard operating procedure for Kala-azar elimination in South-East Asia countries. WHO (Trial Edition) 19 Nov 2007. http://www.searo.who.int/LinkFiles/Kala_azar_VBC-85_Rev_1.pdf
  173. World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. ISBN 978 92 4 156387 1. http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf
  174. World Health Report (1996) Fighting disease, fostering development, p 15. Geneva: WHO. http://www.who.int/whr2001/2001/archives/1996/index.htm
  175. Wu WP, Davis G, Liu HY, Seto E, Lu SB, Zhang J, Hua ZH, Guo JG, Lin DD, Chen HG, Peng G, Feng Z (2002) Application of remote sensing for surveillance of snail habitats in Poyang Lake, China. Chin J Parasitol Parasit Dis 20(4):205–208Google Scholar
  176. Yi Y, Yang D, Chen D, Huang J (2007) Retrieving crop physiological parameters and assessing water deficiency using MODIS data during the winter wheat growing period. Can J Remote Sens 33(3):189–202CrossRefGoogle Scholar
  177. Ying X, Zeng GM, Chen GQ, Tang L, Wang KL, Huang DY (2007) Combining AHP with GIS in synthetic evaluation of eco-environment quality—a case study of hunan province. China Ecol Model 209(2–4):97–109CrossRefGoogle Scholar
  178. Zeilhofer P, dos Santos ES, Ribeiro ALM, Miyazaki RD, dos Santos MA (2007) Habitat suitability mapping of Anopheles darlingi in the surroundings of the Manso hydropower plant reservoir, MatoGrosso, Central Brazil. International Journal of Health Geographics 6:7.  https://doi.org/10.1186/1476-072x-6-7CrossRefGoogle Scholar
  179. Zilberstein D, Shapira M (1994) The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48:449–470CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Science and TechnologyBihar Remote Sensing Application CentrePatnaIndia
  2. 2.Department of GeographyRaja Narendra Lal Khan Women’s CollegeMidnaporeIndia

Personalised recommendations