Advertisement

Physical and Chemical Characteristics of Municipal Solid Waste in Gabes

  • Oumaima ChamemEmail author
  • Moncef Zairi
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

The most common way of solid waste disposal in many countries is landfilling. In Tunisia 65% of the solid waste is landfilled. However, although landfilling is cheap in comparison to other waste management options, it requires significant funds for the construction, the operation phase and the post-closure phase. The mechanical and biological pretreatment processes, applied for decades in developed countries, reduce the economic and environmental costs of landfilling by reducing the volumes of waste to be buried and stabilize them. In addition, recovering valuable materials upstream of the preprocessing can generate a product with high added value. A survey was conducted in 2017 to characterize the municipal solid waste (MSW) composition. Thereto the waste was analyzed during January–February (dry season) and August–September (wet season). Municipal solid waste (MSW) in Gabes includes of a wide range of heterogeneous materials. The organic waste was the main fraction, followed by textiles, fines, paper, plastics, leather, rubber, glass, ceramic, and metal. The average MSW moisture content in Gabes landfill amounts to 69%.

Keywords

Municipal solid waste Developing countries Arid climate Landfill Gabes Management 

References

  1. 1.
    Minghua, Z.X., Xiumin, F., Rovetta, A., Qichang, H., Vicentini, F., Bingkai, L., Giusti, A., Yi, L.: Municipal solid waste management in Pudong New Area, China. J. Waste Manag. 29, 1227–1233 (2009)CrossRefGoogle Scholar
  2. 2.
    Srivastava, V., Ismail, S.A., Singh, P., Singh, R.P.: Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev. Environ. Sci. Biotechnol. 14(2), 317–337 (2015)Google Scholar
  3. 3.
    Ayininuola, G.M., Muibi, M.A.: An engineering approach to solid waste collection system: Ibadan North as case study. Waste Manage. 28, 1681–1687 (2008)CrossRefGoogle Scholar
  4. 4.
    Buenrostro, O., Bocco, G.: Solid waste management in municipalities in Mexico: goals and perspectives. Resour. Conserv. Recycl. 39, 251–263 (2003)CrossRefGoogle Scholar
  5. 5.
    Tchobanoglous, G., Hilary, T., Vagil, S.A.: Integrated solid waste management: engineering principles and management issues. Mc-Graw Hill, New York (1993)Google Scholar
  6. 6.
    Collivignarelli C., Sorlini S., Vaccari M.:  Solid wastes management in developing countries. CD-ROM of ISWA World Congress, Rome (2004)Google Scholar
  7. 7.
    Zairi, M., Aydi, A., Dhia, H.B.: Leachate generation and biogas energy recovery in the Jebel Chakir municipal solid waste landfill, Tunisia. Mater. Cycles Waste Manag. 16, 141–150 (2014)CrossRefGoogle Scholar
  8. 8.
    Eaton, A.D., Franson, M.A.H.: Standard Methods for the Examination of Water & Wastewater. American Public Health Association (2005)Google Scholar
  9. 9.
    Francois, V.: Détermination d’indicateurs d’accélération et de stabilisation de déchets ménagers enfouis. Etude de l’impact de la recirculation de lixiviats sur colonnes de déchets, thèse de doctorat No 8-2004. Université de Limoges, pp. 158. Yousuf TB, R. M. (2007). Monitoring quantity and characteristics of municipal solid waste in Dhaka City. Environ. Monit. Assess. 135, 3–11 (2004)Google Scholar
  10. 10.
    Xiaoli, C., Shimaoka, T., Xianyan, C., Qiang, G., Youcai, Z.: Characteristics and mobility of heavy metals in an MSW landfill: implications in risk assessment and reclamation. J. Hazard. Mater. 144, 485–491 (2007)CrossRefGoogle Scholar
  11. 11.
    Mohee, R.: Assessing the recovery potential of solid waste in Mauritus. Resour. Conserv. Recycl. 36, 33–43 (2002)CrossRefGoogle Scholar
  12. 12.
    Mbuligwe, S.E., Kassenga, G.: Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar EsSalaam city, Tanzania. Resour. Conserv. Recycl. 42, 183–203 (2004)CrossRefGoogle Scholar
  13. 13.
    Zahrani, F.: Contribution à l’élaboration et validation d’un protocole d’audit destiné à comprendre les dysfonctionnements des centres de stockages des déchets (CSD) dans les pays en développement. Application à deux CSD: Nkolfoulou (Came roun) et Essaouira (Maroc). de Lyon, France: The`se de doctorat, Institut National des Sciences Appliquées (2006)Google Scholar
  14. 14.
    Guermoud, N., Ouadjnia, F., Abdelmalek, F., Taleb, F., Addou, A.: Municipal solid waste in Mostaganem city (Western Algeria). Waste Manag. 29, 896–902 (2009)CrossRefGoogle Scholar
  15. 15.
    Gajalakshmi, S., Abbasi, A.S.: Solid waste management by composting: state of the art. Crit. Rev. Environ. Sci. Technol. 38(5), 311–400 (2008)CrossRefGoogle Scholar
  16. 16.
    Aloueimine, S.: MSW Characterization Methodology in Nouakchott, Mauriatnia (2006)Google Scholar
  17. 17.
    Antonopoulos, I.S., Karagiannidis, A., Kalogirou, E.: Estimation of municipal solid waste heating value in Greece in the frame of formulating appropriate scenarios on waste treatment (2010)Google Scholar
  18. 18.
    Gillet, R.: MSW Management and its Application in Developing Countries, vol. 1. OMS Publisher, PUND, Copenhagen, Denmark (1985)Google Scholar
  19. 19.
    MODECOM (Methode de caractérisation des ordures ménagères): Methodology for municipal solid waste characterization. ADEME Report, 2nd edn., pp. 1601–2766 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Water, Energy and Environment Laboratory LR3EThe National School of Engineering of Sfax (ENIS)SfaxTunisia

Personalised recommendations