Pre-drill Pore Pressure Estimation in Shale Gas Reservoirs Using Seismic Genetic Inversion: Application to Barnett Shale (USA)

  • Sid-Ali OuadfeulEmail author
  • Leila Aliouane
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


In this paper, a new formula of pore pressure derived from the Eathon’s model was proposed, relating the acoustic impedance to the pore pressure. The acoustic impedance is obtained from the seismic inversion. The proposed process was applied for the estimation of the pore pressure in the Lower Barnett shale. The results demonstrate a lateral variation of the pore pressure and it can be used for well-bore stability and hydraulic fracture planning and simulation.


Shale gas Pore pressure Eaton’s model Seismic Inversion 


  1. 1.
    Aliouane, L., Ouadfeul, S.: Sweet spots discrimination in shale gas reservoirs using seismic and well-logs data. A case study from the Worth Basin in the Barnett Shale. Energy Procedia 59, 22–27 (2014)CrossRefGoogle Scholar
  2. 2.
    Bowers, G.I.: Pore pressure estimation from velocity data: accounting for pore pressure mechanisms besides undercompaction. SPE Drill. Complet. 10, 89–95 (1995)CrossRefGoogle Scholar
  3. 3.
    Bowker, K.A.: Barnett Shale gas production, Fort Worth Basin: issues and discussion. AAPG Bull. 91(4), 523–533 (2007)CrossRefGoogle Scholar
  4. 4.
    Eaton, B.A.: The equation for geopressure prediction form wells logs. In: SPE, 5544 (1975)Google Scholar
  5. 5.
    Gardner, G.H.F., Gardner, L.W., Gregory, A.R.: Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39, 770–780 (1974)CrossRefGoogle Scholar
  6. 6.
    Sayers, C.M., Johnson, G.M., Denyer, G.: Predrill pore pressure prediction using seismic data. Geophysics 67, 1286–1292 (2002)CrossRefGoogle Scholar
  7. 7.
    Sayers, C.M., den Boer, L.D., Nagy, Z.R., Hooyman, P.J.: Well-constrained seismic estimation of pore pressure with uncertainty. Lead. Edge, pp. 1524–1526 (2006 Dec)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Yin, S.X.: Fracture gradient prediction: an overview and an improved method. Pet. Sci. 14(4), 720–730 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Khemis MilianaKhemis MilianaAlgeria
  2. 2.Laboratoire Physique de la Terre (LABOPHYT), Faculté des Hydrocarbure et de la ChimieUniversité M’hamed Bougara de BoumerdesBoumerdesAlgeria

Personalised recommendations