Advertisement

Innovative Instrumentation for the Study of Atmospheric Aerosol Optical Properties

  • Vera Bernardoni
  • Alice C. Forello
  • Federico Mariani
  • Bruno Paroli
  • Marco A. C. Potenza
  • Alberto Pullia
  • Francesco Riccobono
  • Tiziano Sanvito
  • Sara Valentini
  • Gianluigi Valli
  • Roberta Vecchi
Conference paper

Abstract

Aerosol optical properties (i.e. scattering and absorption) are of great importance to assess aerosol effects e.g. on visibility and Earth radiation balance. In this paper, we present innovative optical instrumentation developed at the Department of Physics “Aldo Pontremoli” of the University of Milan: a multi-wavelength polar photometer (PP_UniMI) and a Single Particle Extinction and Scattering (SPES). PP_UniMI is a filter-based device providing the aerosol absorption coefficient of aerosol at 4 wavelengths (λ). Such measurements are of interest to have insights into the λ-dependent behavior of aerosol absorption properties, which is still poorly understood especially for what concerns weakly absorbing aerosol components. SPES allows to determine the size and refractive index of single particles. In case of absorbing particles, also information on the imaginary part of the refractive index—very important especially in the field of global models—can be provided with little assumptions. We describe the main features of the two instruments and their advantages and limitations. Examples of application are also presented.

Keywords

Aerosol optical properties Scattering Absorption Ångström absorption exponent Particle size 

Notes

Acknowledgements

The authors are grateful to F. Cavaliere and D. Viganò of the Mechanical Workshop of the Physics Department for technical support.

References

  1. 1.
    C.F. Bohren, D.R. Huffmann, Absorption and Scattering by Small Particles (Wiley, New York, 1983)Google Scholar
  2. 2.
    T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013), 1535 ppGoogle Scholar
  3. 3.
    M.O. Andreae, A. Gelencsér, Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006).  https://doi.org/10.5194/acp-6-3131-2006
  4. 4.
    A. Laskin, J. Laskin, S.A. Nizkorodov, Chemistry of atmospheric brown carbon. Chem. Rev. 115, 4335–4382 (2015).  https://doi.org/10.1021/cr5006167CrossRefGoogle Scholar
  5. 5.
    K.J. Zarzana, C.D. Cappa, M.A. Tolbert, Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Sci. Technol. 48, 1133–1144 (2014).  https://doi.org/10.1080/02786826.2014.963498ADSCrossRefGoogle Scholar
  6. 6.
    R. Vecchi, V. Bernardoni, C. Paganelli, G. Valli, A filter-based light-absorption measurement with polar photometer: effects of sampling artefacts from organic carbon. J. Aerosol Sci. 70, 15–25 (2014).  https://doi.org/10.1016/j.jaerosci.2013.12.012ADSCrossRefGoogle Scholar
  7. 7.
    V. Bernardoni, G. Valli, R. Vecchi, Set-up of a multi wavelength polar photometer for off-line absorption coefficient measurements on 1-h resolved aerosol samples. J. Aerosol Sci. 107, 84–93 (2017).  https://doi.org/10.1016/j.jaerosci.2017.02.009ADSCrossRefGoogle Scholar
  8. 8.
    F. Mariani, V. Bernardoni, F. Riccobono, R. Vecchi, G. Valli, T. Sanvito, B. Paroli, A. Pullia, M.A.C. Potenza, Single particle extinction and scattering allows novel optical characterization of aerosols. J. Nanopart. Res. 19, 291 (2017).  https://doi.org/10.1007/s11051-017-3995-3ADSCrossRefGoogle Scholar
  9. 9.
    D. Massabò, L. Caponi, V. Bernardoni, M.C. Bove, P. Brotto, G. Calzolai, F. Cassola, M. Chiari, M.E. Fedi, P. Fermo, M. Giannoni, F. Lucarelli, S. Nava, A. Piazzalunga, G. Valli, R. Vecchi, P. Prati, Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols. Atmos. Environ. 108, 1–12 (2015).  https://doi.org/10.1016/j.atmosenv.2015.02.058ADSCrossRefGoogle Scholar
  10. 10.
    V. Bernardoni, R.E. Pileci, L. Caponi, D. Massabò, The multi-wavelength absorption analyzer (MWAA) model as a tool for source and component apportionment based on aerosol absorption properties: application to samples collected in different environments. Atmosphere 8, 218 (2017).  https://doi.org/10.3390/atmos8110218ADSCrossRefGoogle Scholar
  11. 11.
    M.A.C. Potenza, T. Sanvito, A. Pullia, Measuring the complex field scattered by single submicron particles. AIP Adv. 5, 117222 (2015).  https://doi.org/10.1063/1.4935927ADSCrossRefGoogle Scholar
  12. 12.
    M.A.C. Potenza, P. Milani, Free nanoparticle characterization by optical scattering field analysis: opportunities and perspectives. J. Nanopart. Res. 16, 2680 (2014).  https://doi.org/10.1007/s11051-014-2680-zADSCrossRefGoogle Scholar
  13. 13.
    H.C. Van de Hulst, Light Scattering by Small Particles (Dover Publication Inc., New York, 1957)Google Scholar
  14. 14.
    M.A.C. Potenza, T. Sanvito, S. Argentiere, C. Cella, B. Paroli, C. Lenardi, P. Milani, Single particle optical extinction and scattering allows real time quantitative characterization of drug payload and degradation of polymeric nanoparticles. Sci. Rep. 5, 18228 (2015).  https://doi.org/10.1038/srep18228
  15. 15.
    S. Villa, T. Sanvito, B. Paroli, A. Pullia, B. Delmonte, M.A.C. Potenza, Measuring shape and size of micrometric particles from the analysis of the forward scattered field. J. Appl. Phys. 119, 224901 (2016).  https://doi.org/10.1063/1.4953332ADSCrossRefGoogle Scholar
  16. 16.
    G. Hänel, Radiation budget of the boundary layer: Part II. Simultaneous measurement of mean solar volume absorption and extinction coefficients of particles. Beiträge zur Physik der Atmosphäre 60, 241–247 (1987)Google Scholar
  17. 17.
    G. Hänel, Optical properties of atmospheric particles: complete parameter sets obtained through polar photometry and an improved inversion technique. Appl. Opt. 33, 7187–7199 (1994).  https://doi.org/10.1364/AO.33.007187ADSCrossRefGoogle Scholar
  18. 18.
    A. Petzold, M. Schönlinner, Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 35, 421–441 (2004).  https://doi.org/10.1016/j.jaerosci.2003.09.005ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Annegarn, Time-series analysis of PIXE aerosol measurements. Nucl. Instrum. Methods Phys. Res. B 22, 270–274 (1987).  https://doi.org/10.1016/0168-583X(87)90341-7ADSCrossRefGoogle Scholar
  20. 20.
    A. Pullia, T. Sanvito, M.A. Potenza, F. Zocca, A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes. AIP Rev. Sci. Instrum. 83, 104704 (2012).  https://doi.org/10.1063/1.4756045ADSCrossRefGoogle Scholar
  21. 21.
    N. Utry, T. Ajtai, Á. Filep, M. Dániel Pintér, A. Hoffer, Z. Bozoki, G. Szabó, Mass specific optical absorption coefficient of HULIS aerosol measured by a four-wavelength photoacoustic spectrometer at NIR, VIS and UV wavelengths. Atmos. Environ. 69, 321–324 (2013).  https://doi.org/10.1016/j.atmosenv.2013.01.003
  22. 22.
    D.A. Lack, J.M. Langridge, On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 13, 10535–10543 (2013).  https://doi.org/10.5194/acp-13-10535-2013

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physics “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly
  2. 2.INFN-MilanMilanItaly
  3. 3.Joint Research Centre, European CommissionIspraItaly
  4. 4.EOS s.r.l.MilanItaly

Personalised recommendations