Advertisement

Quantum Simulation of Non-Markovian Qubit Dynamics by an All-Optical Setup

  • Claudia Benedetti
  • Simone Cialdi
  • Matteo A. C. Rossi
  • Bassano Vacchini
  • Dario Tamascelli
  • Stefano Olivares
  • Matteo G. A. Paris
Conference paper

Abstract

We address the experimental implementation of a quantum simulator based on an optical setup. Our device can simulate the dynamical evolution of a qubit undergoing a dephasing process. In particular, we focus on the dynamics arising from the interaction with a classical stochastic field. We encode the state of the qubit in the polarization of a single photon, while the realizations of the stochastic evolution affect its spectral components by a programmable spatial-light-modulator. This setup can simulate in one shot the ensemble-averaged dynamics of the dephasing qubit. We experimentally reconstruct the system density matrix and we show how it is possible to move from a Markovian to a non-Markovian quantum map by changing the spectral parameter of the simulated noise.

Keywords

Quantum simulator Optical setup Dephasing qubits Classical stochastic processes 

References

  1. 1.
    R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    T.H. Johnson, S.R. Clark, D. Jaksch, What is a quantum simulator? EPJ Quant. Technol. 1, 10 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Cialdi, M.A.C. Rossi, C. Benedetti, B. Vacchini, D. Tamascelli, S. Olivares, M.G.A. Paris, All-optical quantum simulator of qubit noisy channels. Appl. Phys. Lett. 110, 081107 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    M.A.C. Rossi, C. Benedetti, S. Cialdi, D. Tamascelli, S. Olivares, B. Vacchini, M.G.A. Paris, Non-Markovianity by undersampling in quantum optical simulators. Int. J. Quantum Inf. 15, 1740009 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Benedetti, M.G.A. Paris, S. Maniscalco, Non-Markovianity of colored noisy channels. Phys. Rev. A 89, 012114 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    M.A.C. Rossi, C. Benedetti, M.G.A. Paris, Engineering decoherence for two-qubit systems interacting with a classical environment. Int. J. Quant. Inf. 12, 1560003 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Benedetti, M.G.A. Paris, Effective dephasing for a qubit interacting with a transverse classical field. Int. J. Quant. Inf. 12, 1461004 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.A.C. Rossi, M.G.A. Paris, Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments. J. Chem. Phys. 144, 024113 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    H.J. Wold, H. Brox, Y.M. Galperin, J. Bergli, Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise. Phys. Rev. B 86, 205404 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Rivas, S.F. Huelga, M.B. Plenio, Entanglement and Non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Lorenzo, F. Plastina, M. Paternostro, Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102(R) (2013)ADSCrossRefGoogle Scholar
  12. 12.
    X.-M. Lu, X. Wang, C.P. Sun, Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    H.-P. Breuer, E.M. Laine, J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Z. He, J. Zou, L. Li, B. Shao, Effective method of calculating the non-Markovianity \(N\) for single-channel open systems. Phys. Rev. A 83, 012108 (2011)Google Scholar
  15. 15.
    A.W. Chin, S.F. Huelga, M.B. Plenio, Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    R. Vasile, S. Olivares, M.G.A. Paris, S. Maniscalco, Continuous variable quantum key distribution in non-Markovian channels. Phys. Rev. A 83, 042321 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S.F. Huelga, A. Rivas, M.B. Plenio, Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. of Sci. Instrum. 71, 1929 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    K. Banaszek, G.M. D’Ariano, M.G.A. Paris, M.F. Sacchi, Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304(R) (1999)CrossRefGoogle Scholar
  21. 21.
    B. Bylicka, D. Chruściński, S. Maniscalco, Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Claudia Benedetti
    • 1
  • Simone Cialdi
    • 1
    • 2
  • Matteo A. C. Rossi
    • 1
  • Bassano Vacchini
    • 1
    • 2
  • Dario Tamascelli
    • 1
  • Stefano Olivares
    • 1
  • Matteo G. A. Paris
    • 1
  1. 1.Quantum Technology Lab, Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly
  2. 2.INFNSezione di MilanoMilanItaly

Personalised recommendations