Advertisement

Tutorial: \(\gamma _5\) in Dimensional Regularization in Dimensional Regularization

  • Mario Raciti
Conference paper

Abstract

Dimensional Regularization (DR) is the most powerful tool to handle renormalization in perturbative Quantum Field Theory. It allows indeed a very effective way to satisfy the symmetry requirements in gauge theory. The limitations of the method arise from the definition of \(\gamma _5\), which has been the most controversial point, since the work of ’t Hooft and Veltman. After a short introduction on renormalization and the regularization problems, the definition of \(\gamma _5\) in DR is considered in the light of the axial anomaly.

References

  1. 1.
    N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, (Wiley-Interscience Publication, 1980)Google Scholar
  2. 2.
    G.’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)Google Scholar
  3. 3.
    G.C. Bollini, J.J. Giambiagi, Nuovo Cim. 12 B, 20 (1972)Google Scholar
  4. 4.
    G.M. Cicuta, E. Montaldi, Nuovo Cim. Lett. 4, 329 (1972)CrossRefGoogle Scholar
  5. 5.
    D.A. Akyeampong, R. Delbourgo, Nuovo Cim. 17 A, 578 (1973)Google Scholar
  6. 6.
    P. Breitenlohner, D. Mason, Comm. Math. Phys. 52, 11 (1977)Google Scholar
  7. 7.
    P. Breitenlohner, D. Mason, Comm. Math. Phys. 52, 39 (1977)Google Scholar
  8. 8.
    P. Breitenlohner, D. Mason, Comm. Math. Phys. 52, 55 (1977)Google Scholar
  9. 9.
    S.L. Adler, Phys. Rev. 177, 2426 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Bell, R Jackiw, Nuovo Cim. LX A, 47 (1969)Google Scholar
  11. 11.
    R. Ferrari, Managing \(\gamma _5\) in dimensional regularization II: the trace with more \(\gamma _5\), hep-th/150307410. Int. J. Theor. Phys. 56, 691 (2017)Google Scholar
  12. 12.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill International, 1980)Google Scholar
  13. 13.
    S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    D.R.T. Jones, J.P. Leveille, Nucl. Phys. B 206, 473 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    S.A. Larin, The renormalization of the axial anomaly in dimensional regularization, hep-ph/9302240. Phys. Lett. B 303, 113 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    M. Bos, Explicit Calculation of the Renormalized Singlet Axial Anomaly hep-ph/9211319. Nucl. Phys. B 404, 215 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    F. Jegerlehner, O.V. Tarasov, Explicit results for the anomalous three point function and non-renormalization theorems hep-ph/0510308. Phys. Lett. B 639, 299 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    G. Bonneau, Phys. Lett. 96 B, 147 (1980) . G. Bonneau, Nucl. Phys. B 177, 523 (1981) . G. Bonneau, Int. J. Mod. Phys. A 5, 3831 (1990)Google Scholar
  19. 19.
    W.A. Bardeen, R. Gastmans, B. Lautrup, Nucl. Phys. B 46, 319 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    M. Chanowitz, M. Furman, I. Hinchliffe, Nucl. Phys. B 159, 225 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    F. Jegerlehner, Facts of life with gamma(5) hep-th/0005255. Eur. Phys. J. C 18, 673 (2001)ADSCrossRefGoogle Scholar

Further Reading

  1. 22.
    J. Collins, Renormalization. (Cambridge Monographs on Mathematical Physics, 1984)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly
  2. 2.INFN-Sezione di MilanoMilanItaly

Personalised recommendations