Advertisement

A Study of the Phase Diagram of Symmetric Binary Gaussian Mixtures

  • Davide Pini
Conference paper

Abstract

We perform an analytic study of the main features of the phase diagram of symmetric binary Gaussian mixtures such that the range and strength of the interactions between particles of one species are the same as those of the other species. We focus on the relative locations of the spinodal and \(\lambda \)-lines, i.e., the boundaries beyond which the uniform mixture becomes unstable respectively towards bulk demixing and microphase formation. We find that, when the \(\lambda \)-line is present, three situations may occur: (i) The spinodal line does not exist, and the \(\lambda \)-line spans the whole concentration axis. (ii) Both the \(\lambda \)- and spinodal lines are present and span the whole concentration axis, but the spinodal instability is always preempted by the \(\lambda \)-line. (iii) The spinodal instability is the only one present at intermediate concentrations, but is preempted by the \(\lambda \)-line at high and low concentrations.

Keywords

Gaussian mixture Spinodal line \(\lambda \)-line Random-phase approximation 

References

  1. 1.
    P.J. Flory, J. Krigbaum, Statistical mechanics of dilute polymer solutions II. J. Chem. Phys. 18, 1086 (1950).  https://doi.org/10.1063/1.1747866
  2. 2.
    J. Dautenhahn, C.K. Hall, Monte Carlo simulation of off-lattice polymer chains: effective pair potentials in dilute solution. Macromolecules 27, 5399 (1994).  https://doi.org/10.1021/ma00097a021ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Louis, P.G. Bolhuis, J.P. Hansen, E.J. Meijer, Can polymer coils be modeled as “soft colloids”? Phys. Rev. Lett. 85, 2522 (2000).  https://doi.org/10.1103/PhysRevLett.85.2522
  4. 4.
    A.A. Louis, P.G. Bolhuis, J.-P. Hansen, Mean-field fluid behavior of the Gaussian core model. Phys. Rev. E. 62, 7961 (2000).  https://doi.org/10.1103/PhysRevE.62.7961
  5. 5.
    R. Finken, J.-P. Hansen, A.A. Louis, Phase separation of penetrable core mixtures. J. Stat. Phys. 110, 1015 (2003).  https://doi.org/10.1023/A:1022136624854CrossRefzbMATHGoogle Scholar
  6. 6.
    A.J. Archer, R. Evans, Binary Gaussian core model: fluid-fluid phase separation and interfacial properties. Phys. Rev. E 64, 041501 (2001).  https://doi.org/10.1103/PhysRevE.64.041501
  7. 7.
    A.J. Archer, R. Evans, Wetting in the binary Gaussian core model. J. Phys.: Condens. Matter 14, 1131 (2002).  https://doi.org/10.1088/0953-8984/14/6/302ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Archer, R. Evans, Solvent-mediated interactions and solvation close to fluid-fluid phase separation: a density functional treatment. J. Chem. Phys. 118, 9726 (2003).  https://doi.org/10.1063/1.1570406
  9. 9.
    I.O. Götze, A.J. Archer, C.N. Likos, Structure, phase behavior, and inhomogeneous fluid properties of binary dendrimer mixtures. J. Chem. Phys. 124, 084901 (2006).  https://doi.org/10.1063/1.2172596ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Archer, C.N. Likos, R. Evans, Soft-core binary fluid exhibiting a \(\lambda \)-line and freezing to a highly delocalized crystal. J. Phys.: Condens. Matter 16, L297 (2004).  https://doi.org/10.1088/0953-8984/16/23/L03Google Scholar
  11. 11.
    D. Pini, A. Parola, L. Reatto, An unconstrained DFT approach to microphase formation and application to binary Gaussian mixtures. J. Chem. Phys. 143, 034902 (2015).  https://doi.org/10.1063/1.4926469ADSCrossRefGoogle Scholar
  12. 12.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, London, 2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Aldo Pontremoli”Università degli Studi di MilanoMilanItaly

Personalised recommendations