Advertisement

Jack on a Devil’s Staircase

  • Andrea Di Gioacchino
  • Marco Gherardi
  • Luca Guido Molinari
  • Pietro Rotondo
Conference paper

Abstract

We review a simple mechanism for the formation of plateaux in the fractional quantum Hall effect. It arises from a map of the microscopic Hamiltonian in the thin torus limit to a lattice gas model, solved by Hubbard. The map suggests a Devil’s staircase pattern, and explains the observed asymmetries in the widths. Each plateau is a new ground state of the system: a periodic Slater state in the thin torus limit. We provide the unitary operator that maps such limit states to the full, effective ground states with same filling fraction. These Jack polynomials generalise Laughlin’s ansatz, and are exact eigenstates of the Laplace-Beltrami operator. Why are Jacks sitting on the Devil’s staircase? This is yet an intriguing problem. Talk given in Milan, Congresso di Dipartimento 2017 (L.G.M.).

Keywords

Quantum Hall effect Laughlin ansatz Jack polynomials Laplace Beltrami operator 

References

  1. 1.
    P. Bak, R. Bruinsma, One-dimensional Ising model and the complete Devil’s staircase. Phys. Rev. Lett. 49(4) (1982).  https://doi.org/10.1103/PhysRevLett.49.249
  2. 2.
    W. Baratta, P.J. Forrester, Jack polynomial fractional quantum Hall states and their generalizations. Nucl. Phys. B 843[PM], 362–381 (2011).  https://doi.org/10.1016/j.nuclphysb.2010.09.018
  3. 3.
    E.J. Bergholtz, A. Karlhede, Quantum Hall systems in Tao-Thouless limit. Phys. Rev. B 77, 155308 (2008).  https://doi.org/10.1103/PhysRevB.77.155308ADSCrossRefGoogle Scholar
  4. 4.
    B.A. Bernevig, F. Haldane, Model fractional quantum Hall states and Jack polynomials. Phys. Rev. Lett. 100, 246802 (2008).  https://doi.org/10.1103/PhysRevLett.100.246802ADSCrossRefGoogle Scholar
  5. 5.
    S.E. Burkov, Y.G. Sinai, Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction. Russ. Math. Surv. 38(4), 235 (1983).  https://doi.org/10.1070/RM1983v038n04ABEH004211MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Buni, D. Mahalu, Direct observation of a fractional charge. Nature 389(6647), 162 (1997).  https://doi.org/10.1038/38241
  7. 7.
    A. Di Gioacchino, L.G. Molinari, V. Erba, P. Rotondo, Unified Fock space representation of fractional quantum Hall states. Phys. Rev. B 95, 245123 (8 pp.) (2017).  https://doi.org/10.1103/PhysRevB.95.245123
  8. 8.
    J. Hubbard, Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts. Phys. Rev. B 17(2), 494–505 (1978).  https://doi.org/10.1103/PhysRevB.17.494ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Jain, Composite Fermions (Cambridge University Press, 2007)Google Scholar
  10. 10.
    K. v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45(6), 494–497 (1980). https://doi.org/10.1103/PhysRevLett.45.494
  11. 11.
    L. Lapointe, L. Vinet, Exact operator solution of the Calogero-Sutherland model. Commun. Math. Phys. 178, 425–452 (1996).  https://doi.org/10.1007/BF02099456ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. Lapointe, A. Lascaux, J. Morse, Determinantal expression and recursion for Jack polynomials. Electron. J. Comb. 7(1) (7 pp.) (2000), http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1n1/pdf
  13. 13.
    R.B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).  https://doi.org/10.1103/PhysRevLett.50.1395ADSCrossRefGoogle Scholar
  14. 14.
    P. Rotondo, L.G. Molinari, P. Ratti, M. Gherardi, Devil’s staircase phase diagram of the fractional quantum Hall effect in the thin-torus limit. Phys. Rev. Lett. 116, 256803 (5 pp.) (2016).  https://doi.org/10.1103/PhysRevLett.116.256803
  15. 15.
    P. Rotondo, A.L. Sellerio, P. Glorioso, S. Caracciolo, M. Cosentino Lagomarsino, M. Gherardi, Current quantization and fractal hierarchy in a driven repulsive lattice gas, arXiv:1708.02403 [cond-mat.stat-mech] (2017)
  16. 16.
    A. Seidel, S-duality constraints on 1D patterns associated with fractional quantum Hall states. Phys. Rev. Lett. 105, 026802 (2010).  https://doi.org/10.1103/PhysRevLett.105.026802ADSCrossRefGoogle Scholar
  17. 17.
    K. Sogo, Eigenstates of Calogero-Sutherland-Moser model and generalized Schur functions. J. Math. Phys. 35(5), 2282–2296 (1994).  https://doi.org/10.1063/1.530552ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    B. Sutherland, Beautiful Models (World Scientific, 2004)Google Scholar
  19. 19.
    R. Tao, D.J. Thouless, Fractional quantization of Hall conductance. Phys. Rev. B 28(2), 1142–1144 (1983).  https://doi.org/10.1103/PhysRevB.28.1142ADSCrossRefGoogle Scholar
  20. 20.
    R. Thomale, B. Estienne, N. Regnault, B.A. Bernevig, Decomposition of fractional quantum Hall model states: product rule symmetries and approximations. Phys. Rev. B 84, 045127 (2011).  https://doi.org/10.1103/PhysRevB.84.045127ADSCrossRefGoogle Scholar
  21. 21.
    D. C. Tsui, H. L. Stormer, A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982). https://doi.org/10.1103/PhysRevLett.48.1559
  22. 22.
    R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, C. Gossard, J.H. English, Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59(15), 1776–1779 (1987).  https://doi.org/10.1103/PhysRevLett.59.1776ADSCrossRefGoogle Scholar
  23. 23.
    D. Yoshioka, Ground state of the two-dimensional charged particles in a strong magnetic field and the fractional quantum Hall effect. Phys. Rev. B 29(12), 6833–6839 (1984).  https://doi.org/10.1103/PhysRevB.29.6833ADSCrossRefGoogle Scholar
  24. 24.
    D. Yoshioka, The Quantum Hall Effect, 2nd ed. Springer Series in Solid State Science, vol. 133 (Springer, 2002)Google Scholar
  25. 25.
    D. Yoshioka, B.I. Halperin, P.A. Lee, Ground state of two-dimensional electrons in strong magnetic fields and \(\frac{1}{3}\) quantized Hall effect. Phys. Rev. Lett. 50(16), 1219–1222 (1983).  https://doi.org/10.1103/PhysRevLett.50.1219Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrea Di Gioacchino
    • 1
  • Marco Gherardi
    • 1
  • Luca Guido Molinari
    • 1
  • Pietro Rotondo
    • 2
  1. 1.Dipartimento di FisicaUniversità degli Studi di Milano and I.N.F.N. sezione di MilanoMilanItaly
  2. 2.University of NottinghamNottinghamUK

Personalised recommendations