Advertisement

An Integrated Tool for the Optimization and Simulation of Hybrid Product-Process Layouts

  • Gianluca D’Antonio
  • Paolo Chiabert
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

The design of a manufacturing process is a crucial phase for ensuring a profitable production. In particular, an appropriate layout for the facilities must be identified to minimize the impact of transporting manufacturing units throughout the shop-floor on both process performance and production cost. In a former work, a mathematical model capable to define process, product and hybrid layouts has been defined by minimizing the average distance travelled by each manufacturing unit. The present paper aims to present an integrated tool able to: (i) deploy the optimization model to autonomously evaluate the optimal layout proposal that fits with a set of input provided by the designer; (ii) evaluate a set of KPIs to assess the layout; (iii) compile a discrete event simulation model on FlexSim to enable the designer to evaluate layout performance in a multiplicity of operating scenarios.

Keywords

Facility layout problem Facilities planning and design Optimal facility layout Hybrid facility Discrete event simulation 

Notes

Acknowledgements

The research presented in this paper has been developed in partnership with COMAU S.p.A. and with Centro Ricerche Fiat. The research has been funded by Centro Ricerche Fiat within the project FlexAGV: Exploitation of flexibility in smart manufacturing systems, with the support of eng. J. Mascolo (CRF) and Andrea Ascheri (COMAU).

References

  1. 1.
    Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Annu. Rev. Control 31(2), 255–267 (2007).  https://doi.org/10.1016/j.arcontrol.2007.04.001CrossRefGoogle Scholar
  2. 2.
    Tompkins, J., White, J., Bozer, Y., Tanchoco, J.: Facilities Planning. Wiley, New York (2010)Google Scholar
  3. 3.
    Heragu, S.S.: Facilities Design, 4th edn. CRC Press, Clermont (2016)Google Scholar
  4. 4.
    Armour, G.C., Buffa, E.S.: A heuristic algorithm and simulation approach to relative location of facilities. Manag. Sci. 9(2), 294–309 (1963).  https://doi.org/10.1287/mnsc.9.2.294CrossRefGoogle Scholar
  5. 5.
    Shayan, E., Chittilappilly, A.: Genetic algorithm for facilities layout problems based on slicing tree structure. Int. J. Prod. Res. 42(19), 4055–4067 (2004).  https://doi.org/10.1080/00207540410001716471CrossRefGoogle Scholar
  6. 6.
    Anjos, M.F., Vieira, M.V.: Mathematical optimization approaches for facility layout problems: the state-of-the-art and future research directions. Eur. J. Oper. Res. 261(1), 1–16 (2017).  https://doi.org/10.1016/j.ejor.2017.01.049MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hassan, M.M.D.: Machine layout problem in modern manufacturing facilities. Int. J. Prod. Res. 32(11), 2559–2584 (1994).  https://doi.org/10.1080/00207549408957084CrossRefzbMATHGoogle Scholar
  8. 8.
    Kusiak, A., Heragu, S.S.: The facility layout problem. Eur. J. Oper. Res. 29(3), 229–251 (1987).  https://doi.org/10.1016/0377-2217(87)90238-4MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Meller, R.D., Gau, K.-Y.: The facility layout problem: recent and emerging trends and perspectives. J. Manuf. Syst. 15(5), 351–366 (1996).  https://doi.org/10.1016/0278-6125(96)84198-7CrossRefGoogle Scholar
  10. 10.
    Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Int. J. Adv. Manuf. Technol. 30(5), 425–433 (2006).  https://doi.org/10.1007/s00170-005-0087-9CrossRefGoogle Scholar
  11. 11.
    Benjaafar, S., Sheikhzadeh, M.: Design of flexible plant layouts. IIE Trans. 32, 309–322 (2000).  https://doi.org/10.1080/07408170008963909CrossRefGoogle Scholar
  12. 12.
    Kouvelis, P., Kim, M.W.: Unidirectional loop network layout problem in automated manufacturing systems. Oper. Res. 40(3), 533–550 (1992).  https://doi.org/10.1287/opre.40.3.533CrossRefzbMATHGoogle Scholar
  13. 13.
    Xie, W., Sahinidis, N.V.: A branch-and-bound algorithm for the continuous facility layout problem. Comput. Chem. Eng. 32(4), 1016–1028 (2008).  https://doi.org/10.1016/j.compchemeng.2007.05.003CrossRefGoogle Scholar
  14. 14.
    Montreuil, B.: A modelling framework for integrating layout design and flow network design. In: Progress in Material Handling and Logistics, vol. 2, pp. 95–115. Springer, Berlin (1991). http://dx.doi.org/10.1007/978-3-642-84356-3_8
  15. 15.
    Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23(3), 117–127 (1998).  https://doi.org/10.1016/S0167-6377(98)00024-8MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sherali, H.D., Fraticelli, B.M.P., Meller, R.D.: Enhanced model formulations for optimal facility layout. Oper. Res. 51(4), 629–644 (2003).  https://doi.org/10.1287/opre.51.4.629.16096MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bukchin, Y., Tzur, M.: A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. Int. J. Prod. Res. 52(24), 7339–7359 (2014).  https://doi.org/10.1080/00207543.2014.930534CrossRefGoogle Scholar
  18. 18.
    Mak, K., Wong, Y., Chan, F.: A genetic algorithm for facility layout problems. Comput. Integr. Manuf. Syst. 11(1), 113–127 (1998).  https://doi.org/10.1016/S0951-5240(98)00018-4CrossRefGoogle Scholar
  19. 19.
    Azadivar, F., Wang, J.: Facility layout optimization using simulation and genetic algorithms. Int. J. Prod. Res. 38(17), 4369–4383 (2000).  https://doi.org/10.1080/00207540050205154CrossRefzbMATHGoogle Scholar
  20. 20.
    Dunker, T., Radons, G., Westkämper, E.: A coevolutionary algorithm for a facility layout problem. Int. J. Prod. Res. 41(15), 3479–3500 (2003).  https://doi.org/10.1080/0020754031000118125CrossRefzbMATHGoogle Scholar
  21. 21.
    Galaxe-Paes, F., Alves-Pessoa, A., Vidal, T.: A hybrid genetic algorithm with decomposition phases for the unequal area facility layout problem. Eur. J. Oper. Res. 256(3), 742–756 (2017).  https://doi.org/10.1016/j.ejor.2016.07.022MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Komarudin, K.Y.W.: Applying ant system for solving unequal area facility layout problems. Eur. J. Oper. Res. 202(3), 730–746 (2010).  https://doi.org/10.1016/j.ejor.2009.06.016MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Niroomand, S., Hadi-Vencheh, A., Shahanaghi, R., Vizvári, B.: Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst. Appl. 42(19), 6586–6597 (2015).  https://doi.org/10.1016/j.eswa.2015.04.040CrossRefGoogle Scholar
  24. 24.
    Sikaroudi, A.M.E., Shahanaghi, K.: Facility layout by collision detection and force exertion heuristics. J. Manuf. Syst. 41, 21–30 (2016).  https://doi.org/10.1016/j.jmsy.2016.07.001CrossRefGoogle Scholar
  25. 25.
    D’Antonio, G., Saja, A., Ascheri, A., Mascolo, J., Chiabert, P.: An integrated mathematical model for the optimization of hybrid product-process layouts. J. Manuf. Syst. 46, 179–192 (2018).  https://doi.org/10.1016/j.jmsy.2017.12.003CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Politecnico di TorinoTurinItaly

Personalised recommendations