Advertisement

Possibilities of Maintenance Service Process Analyses and Improvement Through Six Sigma, Lean and Industry 4.0 Implementation

  • Katarzyna Antosz
  • Dorota Stadnicka
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)

Abstract

The paper deals with problems concerning a maintenance process realized by maintenance service companies. In the paper the concept of wastes identification in such companies is presented. Then, a case study company is analysed. The company designs, manufactures, implements and performs maintenance processes of installations used in products control, sorting and packing in clients’ factories. The analysed problems concern data collection as well as their analysis in order to improve the maintenance company efficiency. The authors propose to implement the Six Sigma methodology to collect and analyse data, elements of the Lean concept to identify wastes and Industry 4.0 concept in order to improve the maintenance service processes.

Keywords

Maintenance Six Sigma Lean concept Industry 4.0 Efficiency improvement 

References

  1. 1.
    Swanson, L.: Linking maintenance strategies to performance. Int. J. Prod. Econ. 70(3), 237–244 (2001)CrossRefGoogle Scholar
  2. 2.
    Iung, B., Levrat, E., Crespo-Marquez, A., Erbe, H.: Conceptual framework for e-Maintenance: illustration by e-Maintenance technologies and platforms. Annu. Rev. Control 33(2), 220–229 (2009)CrossRefGoogle Scholar
  3. 3.
    Tretten, F.P., Normark, C.J.: Human factors issues in aircraft maintenance activities: a holistic approach. In: Human Factors and Ergonomics Society Annual Meeting: A Holistic Approach, Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2014 Annual Conference, 08–10 October 2014 (2014)Google Scholar
  4. 4.
    Duffuaa, S.O., Raouf, A.: Intelligent maintenance. In: Planning and Control of Maintenance Systems, pp. 271–280. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19803-3_13
  5. 5.
    Zasadzien, M.: Application of the Six Sigma method for improving maintenance processes – case study. In: Proceedings of the 6th International Conference on Operations Research and Enterprise Systems, ICORES 2017, pp. 314–320 (2017)Google Scholar
  6. 6.
    Garg, A., Deshmukh, S.G.: Maintenance management: literature review and directions. J. Qual. Maint. Eng. 12(3), 205–238 (2006)CrossRefGoogle Scholar
  7. 7.
    Candell, O., Karin, R., Söderholm, P.: eMaintenance-Information logistics for maintenance support. Robot. Comput.-Integr. Manuf. 25, 937–944 (2009)CrossRefGoogle Scholar
  8. 8.
    Claverley, J.D., Leach, R.K.: A review of the existing performance verification infrastructure for micro-CMMs. Precis. Eng. 39, 1–15 (2015)CrossRefGoogle Scholar
  9. 9.
    Klos, S., Patalas-Maliszewska, J.: The impact of ERP on maintenance management. Manag. Prod. Eng. Rev. 4(3), 15–25 (2013)Google Scholar
  10. 10.
    Loska, A.: Scenario modeling exploitation decision-making process in technical network systems. Eksploatacja i Niezawodnosc – Maint. Reliab. 19(2), 268–278 (2017).  https://doi.org/10.17531/ein.2017.2.15CrossRefGoogle Scholar
  11. 11.
    Ratnayake, R., Antosz, K.: Risk-based maintenance assessment in the manufacturing industry: minimisation of suboptimal prioritisation. Manag. Prod. Eng. Rev. 8(1), 38–45 (2017)Google Scholar
  12. 12.
    Antosz, K., Stadnicka, D.: An intelligent system supporting a maintenance process of specialised medical equipment. In: Burduk, A., Mazurkiewicz, D. (eds.) ISPEM 2017. AISC, vol. 637, pp. 23–32. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-64465-3_3CrossRefGoogle Scholar
  13. 13.
    Yang, Z., Yang, G.: Optimization of aircraft maintenance plan based on genetic algorithm. Phys. Proc. 33, 580–586 (2012)CrossRefGoogle Scholar
  14. 14.
    Erol, S., Jäger, A., Hold, P., Ott, K., Sihn, W.: Tangible Industry 4.0: a scenario-based approach to learning for the future of production. Proc. CIRP 54, 13–18 (2014)CrossRefGoogle Scholar
  15. 15.
    Glawara, R., Kemeny, Z., Nemetha, T., Matyas, K., Monostoric, L., Sihna, W.: A holistic approach for quality oriented maintenance planning supported by data mining methods. Proc. CIRP 57, 259–264 (2016)CrossRefGoogle Scholar
  16. 16.
    Pogačnik, B., Duhovnik, J., Tavčar, J.: Aircraft fault forecasting at maintenance service on the basis of historic data and aircraft parameters. Eksploatacja i Niezawodnosc – Maint. Reliab. 19(4), 624–633 (2017).  https://doi.org/10.17531/ein.2017.4.17CrossRefGoogle Scholar
  17. 17.
    Gupta, S., Gupta, P., Parida, A.: Modeling lean maintenance metric using incidence matrix approach. Int. J. Syst. Assur. Eng. Manag. 8(4), 799–816 (2017)Google Scholar
  18. 18.
    Stadnicka, D., Ratnayake, R.M.C.: Minimization of service disturbance: VSM based case study in telecommunication industry. In: 8th IFAC Conference on Manufacturing Modelling, Management and Control, MIM, Troyes, 28–30 June (2016). IFAC PAPERSONLINE 49(12), 255–260Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering and AeronauticsRzeszow University of TechnologyRzeszowPoland

Personalised recommendations