Blow-Up Profile of Rotating 2D Focusing Bose Gases

  • Mathieu LewinEmail author
  • Phan Thành Nam
  • Nicolas Rougerie
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 270)


We consider the Gross–Pitaevskii equation describing an attractive Bose gas trapped to a quasi 2D layer by means of a purely harmonic potential, and which rotates at a fixed speed of rotation \(\Omega \). First, we study the behavior of the ground state when the coupling constant approaches \(a_*\), the critical strength of the cubic nonlinearity for the focusing nonlinear Schrödinger equation. We prove that blow-up always happens at the center of the trap, with the blow-up profile given by the Gagliardo–Nirenberg solution. In particular, the blow-up scenario is independent of \(\Omega \), to leading order. This generalizes results obtained by Guo and Seiringer (Lett. Math. Phys., 2014, vol. 104, p. 141–156) in the nonrotating case. In a second part, we consider the many-particle Hamiltonian for N bosons, interacting with a potential rescaled in the mean-field manner \(-a_NN^{2\beta -1}w(N^\beta x)\), with \(w\geqslant 0\) a positive function such that \(\int _{{\mathbb R }^2}w(x)\,dx=1\). Assuming that \(\beta <1/2\) and that \(a_N\rightarrow a_*\) sufficiently slowly, we prove that the many-body system is fully condensed on the Gross–Pitaevskii ground state in the limit \(N\rightarrow \infty \).



It is our pleasure to dedicate this paper to Herbert Spohn, on the occasion of his 70th birthday. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements MDFT No 725528 and CORFRONMAT No 758620).


  1. 1.
    Aftalion, A.: Vortices in Bose–Einstein Condensates. Progress in Nonlinear Differential Equations and Their Applications, vol. 67. Springer, Berlin (2006)Google Scholar
  2. 2.
    Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations. Princeton University Press, Princeton (1982)Google Scholar
  3. 3.
    Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)CrossRefGoogle Scholar
  4. 4.
    Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baym, G., Pethick, C.J.: Ground-state properties of magnetically trapped Bose-condensed Rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996)CrossRefGoogle Scholar
  6. 6.
    Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995)CrossRefGoogle Scholar
  7. 7.
    Caglioti, E., Lions, P.-L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carles, R.: Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Models Methods Appl. Sci. 12, 1513–1523 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Carr, L.D., Clark, C.W.: Vortices in attractive Bose-Einstein condensates in two dimensions. Phys. Rev. Lett. 97, 010403 (2006)CrossRefGoogle Scholar
  10. 10.
    Chang, S.-M., Gustafson, S., Nakanishi, K., Tsai, T.-P.: Spectra of linearized operators for NLS solitary waves. SIAM J. Math. Anal. 39, 1070–1111 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, X., Holmer, J.: The rigorous derivation of the 2D cubic focusing NLS from quantum many-body evolution. Int. Math. Res. Not. IMRN, 4173–4216 (2017)Google Scholar
  12. 12.
    Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de Finetti theorems. Theory of Quantum Computation, Communication, and Cryptography. Lecture Notes in Computer Science, vol. 6519. Springer, Berlin (2011)CrossRefGoogle Scholar
  13. 13.
    Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Collin, A., Lundh, E., Suominen, K.-A.: Center-of-mass rotation and vortices in an attractive Bose gas. Phys. Rev. A 71, 023613 (2005)CrossRefGoogle Scholar
  15. 15.
    Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)CrossRefGoogle Scholar
  16. 16.
    Cornell, E.A., Wieman, C.E.: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)CrossRefGoogle Scholar
  17. 17.
    Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Rotating superfluids in anharmonic traps: from vortex lattices to giant vortices. Phys. Rev. A 84, 053614 (2011)CrossRefGoogle Scholar
  18. 18.
    Dalfovo, F., Stringari, S.: Bosons in anisotropic traps: ground state and vortices. Phys. Rev. A 53, 2477–2485 (1996)CrossRefGoogle Scholar
  19. 19.
    Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)CrossRefGoogle Scholar
  20. 20.
    de Finetti, B.: Funzione caratteristica di un fenomeno aleatorio. Atti della R. Accademia Nazionale dei Lincei, Ser. 6, Memorie, Classe di Scienze Fisiche, Matematiche e Naturali (1931)Google Scholar
  21. 21.
    de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68 (1937)Google Scholar
  22. 22.
    Deng, Y., Guo, Y., Lu, L.: On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. Calc. Var. Partial Differ. Equ. 54, 99–118 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Diaconis, P., Freedman, D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Donley, E.A., Claussen, N.R., Cornish, S.L., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Dynamics of collapsing and exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)CrossRefGoogle Scholar
  25. 25.
    Fannes, M., Vandenplas, C.: Finite size mean-field models. J. Phys. A 39, 13843–13860 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Fannes, M., Spohn, H., Verbeure, A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Fetter, A.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)CrossRefGoogle Scholar
  28. 28.
    Frank, R.L.: Ground states of semi-linear PDE. Lecture notes from the “Summerschool on Current Topics in Mathematical Physics”, CIRM Marseille (2013)Google Scholar
  29. 29.
    Gerton, J.M., Strekalov, D., Prodan, I., Hulet, R.G.: Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions. Nature 408, 692–695 (2000)CrossRefGoogle Scholar
  30. 30.
    Guo, Y., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Guo, Y., Zeng, X., Zhou, H.-S.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Harrow, A.: The church of the symmetric subspace (2013)Google Scholar
  33. 33.
    Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hudson, R.L., Moody, G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheor. und Verw. Gebiete 33, 343–351 (1975/1976)Google Scholar
  35. 35.
    Jeblick, M., Pickl, P.: Derivation of the time dependent two dimensional focusing NLS equation (2017). arXiv:1707.06523
  36. 36.
    Ketterle, W.: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)CrossRefGoogle Scholar
  37. 37.
    Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)MathSciNetCrossRefGoogle Scholar
  39. 39.
    König, R., Renner, R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46, 122108 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lévy-Leblond, J.-M.: Nonsaturation of gravitational forces. J. Math. Phys. 10, 806–812 (1969)CrossRefGoogle Scholar
  41. 41.
    Lewin, M.: Mean-field limit of Bose systems: rigorous results. In: Proceedings of the International Congress of Mathematical Physics (2015)Google Scholar
  42. 42.
    Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Lewin, M., Nam, P.T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. École Polytech. Math. 2, 65–115 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express (AMRX), 48–63 (2015)Google Scholar
  45. 45.
    Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68, 413–471 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368, 6131–6157 (2016)CrossRefGoogle Scholar
  47. 47.
    Lewin, M., Thành Nam, P., Rougerie, N.: A note on 2D focusing many-boson systems. Proc. Am. Math. Soc. 145, 2441–2454 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)Google Scholar
  49. 49.
    Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  50. 50.
    Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars. Birkhäuser, Basel (2005)Google Scholar
  52. 52.
    Lundh, E., Collin, A., Suominen, K.-A.: Rotational states of Bose gases with attractive interactions in anharmonic traps. Phys. Rev. Lett. 92, 070401 (2004)CrossRefGoogle Scholar
  53. 53.
    Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)MathSciNetCrossRefGoogle Scholar
  54. 54.
    McLeod, K.: Uniqueness of positive radial solutions of \(\Delta u+f(u)=0\) in \({ R}^n\). II. Trans. Am. Math. Soc. 339, 495–505 (1993)Google Scholar
  55. 55.
    Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29, 561–578 (1982)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Mottelson, B.: Yrast spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. Lett. 83, 2695–2698 (1999)CrossRefGoogle Scholar
  57. 57.
    Mueller, E.J., Baym, G.: Finite-temperature collapse of a Bose gas with attractive interactions. Phys. Rev. A 62, 053605 (2000)CrossRefGoogle Scholar
  58. 58.
    Nam, P., Napiórkowski, M.: Norm approximation for many-body quantum dynamics: focusing case in low dimensions (2017). arXiv:1710.09684
  59. 59.
    Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large Bose systems: the Gross-Pitaevskii limit revisited (2015)Google Scholar
  60. 60.
    Pethick, C.J., Pitaevskii, L.P.: Criterion for Bose-Einstein condensation for particles in traps. Phys. Rev. A 62, 033609 (2000)CrossRefGoogle Scholar
  61. 61.
    Petz, D., Raggio, G.A., Verbeure, A.: Asymptotics of Varadhan-type and the Gibbs variational principle. Commun. Math. Phys. 121, 271–282 (1989)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Phan, T.V.: Blow-up profile of Bose-Einstein condensate with singular potentials. J. Math. Phys. 58, 072301, 10 (2017)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Rougerie, N.: De Finetti theorems, mean-field limits and Bose-Einstein condensation (2015)Google Scholar
  65. 65.
    Rougerie, N.: Some contributions to many-body quantum mathematics. Habilitation thesis, Université de Grenoble-Alpes (2016). arXiv:1607.03833
  66. 66.
    Saito, H., Ueda, M.: Split-merge cycle, fragmented collapse, and vortex disintegration in rotating Bose-Einstein condensates with attractive interactions. Phys. Rev. A 69, 013604 (2004)CrossRefGoogle Scholar
  67. 67.
    Sakaguchi, H., Malomed, B.A.: Localized matter-wave patterns with attractive interaction in rotating potentials. Phys. Rev. A 78, 063606 (2008)CrossRefGoogle Scholar
  68. 68.
    Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3, 445–455 (1981)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Størmer, E.: Symmetric states of infinite tensor products of \(C^{\ast } \)-algebras. J. Funct. Anal. 3, 48–68 (1969)Google Scholar
  70. 70.
    Ueda, M., Leggett, A.J.: Macroscopic quantum tunneling of a Bose-Einstein condensate with attractive interaction. Phys. Rev. Lett. 80, 1576–1579 (1998)CrossRefGoogle Scholar
  71. 71.
    van den Berg, M., Lewis, J.T., Pulè, J.V.: The large deviation principle and some models of an interacting Boson gas. Commun. Math. Phys. 118, 61–85 (1988)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)CrossRefGoogle Scholar
  73. 73.
    Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Werner, R.F.: Large deviations and mean-field quantum systems. Quantum Probability and Related Topics, QP-PQ, VII, pp. 349–381. World Scientific Publishing, River Edge (1992)CrossRefGoogle Scholar
  75. 75.
    Wilkin, N.K., Gunn, J.M.F., Smith, R.A.: Do attractive Bosons condense? Phys. Rev. Lett. 80, 2265 (1998)CrossRefGoogle Scholar
  76. 76.
    Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Zhang, J.: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential. Commun. Partial Differ. Equ. 30, 1429–1443 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mathieu Lewin
    • 1
    Email author
  • Phan Thành Nam
    • 2
  • Nicolas Rougerie
    • 3
  1. 1.CNRS and CEREMADEUniversité Paris-Dauphine, PSL Research UniversityParisFrance
  2. 2.Department of MathematicsLudwig Maximilian University of MunichMunichGermany
  3. 3.CNRS, LPMMC (UMR 5493)Université Grenoble-AlpesGrenobleFrance

Personalised recommendations