Correlation Between NAO and Radio Refractive Index Over Africa

  • Joseph DadaEmail author
  • Adekunle Titus Adediji
  • Kayode Adedayo
  • Moses Ajewole
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


The pathway of a propagated radio waves is partly determined by the refractive index of the atmosphere through which the waves traverse. The radio refractive index is in turn governed by the variations in the meteorological parameters while the Northern Atlantic Oscillation (NAO) has been found to influence temperature and precipitation patterns. This study investigated the correlation between NAO and radio refractive index over Africa using 30 years data of daily meteorological parameters and NAO, spanning from 1981 to 2010. Rainforest and Desert climate recorded the highest (>290 N-units) and the lowest (<200 N-units) radio refractive index, respectively. The correlation is observed to be generally weak (−0.2 to 0.2).


NAO Radio Refractive index Correlation Meteorological 


  1. 1.
    Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M.: An Overview of the North Atlantic Oscillation. American Geophysical Union, pp. 1–35 (2003)Google Scholar
  2. 2.
    Greatbatch, R.J.: The North Atlantic Oscillation (2000)CrossRefGoogle Scholar
  3. 3.
    Beniston, M., Jungo, P.: Shifts in the distributions of pressure, temperature and moisture and changes in the typical weather patterns in the Alpine region in response to the behavior of the North Atlantic Oscillation. Theor. Appl. Climatol. 42(71), 29–42 (2002)CrossRefGoogle Scholar
  4. 4.
    Hoerling, M.P.: Tropical origins for recent North Atlantic climate change. Science 292(5514), 90–92 (2001)CrossRefGoogle Scholar
  5. 5.
    Baldwin, M.P.: Stratospheric harbingers of anomalous weather regimes. Science 294(5542), 581–584 (2001)CrossRefGoogle Scholar
  6. 6.
    Jerez, S., Jimenez-Guerrero, P., Montávez, J.P., Trigo, R.M.: Impact of the North Atlantic oscillation on European aerosol ground levels through local processes: a seasonal model-based assessment using fixed anthropogenic emissions. Atmos. Chem. Phys. 13, 11195–11207 (2013)CrossRefGoogle Scholar
  7. 7.
    Agbo, G.A.: Tropospheric refractivity dependence on atmospheric weather condition in Jos-Nigeria. J. Basic Phys. Res. 2(2), 1–6 (2011)Google Scholar
  8. 8.
    Ogunjo, S.T., Fuwape, I.A., Oluyamo, S.S., Rabiu, A., Dada, J.B.: Dynamics of vertical profile of radio refractivity. In: Annual Conference of African Geophysical Society, Abidjan, Cote d’Ivoire (2017)Google Scholar
  9. 9.
    Raju, C.S., Saha, K., Thampi, B.V., Parameswaran, K., Suresh, R.C.: Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements. Ann. Geophys. 25(9), 1935–1948 (2007)CrossRefGoogle Scholar
  10. 10.
    Hall, M.P.M.: Effect of the troposphere on radio communication. Pete Peregrins Ltd., U.K (1979)Google Scholar
  11. 11.
    Willoughby, A.A., Aro, T.O., Owolabi, I.E.: Seasonal variations of radio refractivity gradients in Nigeria. J. Atmos. Solar-Terr. Phys. 64, 417–425 (2002)CrossRefGoogle Scholar
  12. 12.
    Adediji, A.T., Ajewole, M.O., Ojo, J.S., Ashidi, A.G., Ismail, M., Mandeep, J.S.: Influence of some meteorological factors on tropospheric radio refractivity over a tropical location in Nigeria. MAUSA 123–128 (2015)Google Scholar
  13. 13.
    Adediji, A.T., Ajewole, M.O.: Vertical profile of radio refractivity gradient in Akure South-West Nigeria. Prog. Electromagn. Res. C 4, 157–168 (2008)Google Scholar
  14. 14.
    Fuwape, I.A., Ogunjo, S.T., Dada, J.B., Ashidi, G.A., Emmanuel, I.: Phase synchronization between tropospheric radio refractivity and rainfall amount in a tropical region. J. Atmos. Solar-Terr. Phys. 149, 46–51 (2016)CrossRefGoogle Scholar
  15. 15.
    Samprit, C., Hadi, A.S.: Simple Linear Regression. Wiley, New York, pp. 21–45 (2006)Google Scholar
  16. 16.
    Mark, G.: The relationship between Relative humidity and the dew point temperature in moist air. Am. Meteorol. Soc. J. 86(2), 225–234 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joseph Dada
    • 1
    • 2
    Email author
  • Adekunle Titus Adediji
    • 2
  • Kayode Adedayo
    • 2
  • Moses Ajewole
    • 2
  1. 1.Department of Physical and Chemical SciencesElizade UniversityIlara-MokinNigeria
  2. 2.Department of PhysicsFederal University of TechnologyAkureNigeria

Personalised recommendations