Fifty Years of Paleoceanography: Major Achievements in Our Understanding of Past and Future Climate Change—Some Memories and Hearsay

  • Michael SarntheinEmail author
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Paleoceanography quickly evolved into the first branch of historic geosciences that developed and employed strictly quantitative proxy data and a quantitative age scale to trace past ocean scenarios per analogy to the parameters used to study the modern ocean and to feed model simulations of modern, past, and future ocean scenarios. The present article outlined some milestones and ‘heroes’ that helped to promote the amazing evolution of this novel field of earth sciences.


History of science Major advances in paleoceanography Quantitative tracers of ocean water masses Major scientific pacemakers Climatic change Quaternary 


  1. 1.
    Weyl, P.K.: Micropaleontology and ocean surface climate. Science 202(4367), 475–481 (1968)CrossRefGoogle Scholar
  2. 2.
    Bé, A.W.H., Tolderlund, D.S.: Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian oceans. In: Funnel, B.M., Riedel, W.R. (eds.) The Micropaleontology of Oceans, pp. 105–149 (1971)Google Scholar
  3. 3.
    CLIMAP Project Members: Seasonal reconstructions of the earth’s surface at the last glacial maximum. Geological Society of America, Map and Chart Series, MC-36 (1981)Google Scholar
  4. 4.
    Hays, J.D., Imbrie, J., Shackleton, N.J.: Variations in the earth’s orbit: pacemaker of the ice ages. Science 194(4270), 1121–1132 (1976)CrossRefGoogle Scholar
  5. 5.
    Sarnthein, M.: Sand deserts during glacial maximum and climatic optimum. Nature 272(5648), 43–46 (1978)CrossRefGoogle Scholar
  6. 6.
    Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., Pflaumann, U.: Glacial and interglacial wind regimes over the eastern subtropical Atlantic and NW Africa. Nature 293, 153–157 (1981)CrossRefGoogle Scholar
  7. 7.
    Manabe, S., Hahn, D.G.: Simulation of the tropical climate of an ice age. J. Geophys. Res. 82, 3889–3911 (1977)CrossRefGoogle Scholar
  8. 8.
    Kullenberg, B.: The pison core samples. Svenska Hydrogr. Biol. Komm. Skr. (Ser. 3: Hydrogr.) 1(2), 46 (1947)Google Scholar
  9. 9.
    Berger, A.L.: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci. 35(12), 2362–2367 (1978)CrossRefGoogle Scholar
  10. 10.
    Stommel, H.: Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961)CrossRefGoogle Scholar
  11. 11.
    Stuiver, M., Quay, P.D., Östlund, H.G.: Abyssal water carbon-14 distribution and the age of the world oceans. Science 219, 849–851 (1983)CrossRefGoogle Scholar
  12. 12.
    Broecker, W.S., Peng, T.H.: Tracers in the Sea. ELDIGIO Press (1986)Google Scholar
  13. 13.
    Labeyrie, L.D., Duplessy, J.C., Blanc, P.L.: Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327, 477–482 (1987)CrossRefGoogle Scholar
  14. 14.
    Brassell, S.C., Eglinton, G., Marlowe, I.T., Sarnthein, M., Pflaumann, U.: Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986)CrossRefGoogle Scholar
  15. 15.
    Seibold, E., Berger, W.H.: The Sea Floor. An Introduction to Marine Geology, 4th edn, 316 pp. Springer, Heidelberg (2016)Google Scholar
  16. 16.
    Sarnthein, M., Winn, K., Jung, S., Duplessy, J.C., Labeyrie, L., Erlenkeuser, H., Ganssen, G.: Changes in East Atlantic deepwater circulation over the last 30,000 years—an eight-time-slice record. Paleoceanography 9, 209–267 (1994)CrossRefGoogle Scholar
  17. 17.
    Curry, W.B., Oppo, D.W.: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20 (2005). Scholar
  18. 18.
    Pflaumann, U., Sarnthein, M., Chapman, M., Funnell, B., Huels, M., Kiefer, T., Maslin, M., Schulz, H., Swallow, J., van Kreveld, S., Vautravers, M., Vogelsang, E., Weinelt, M.: The glacial North Atlantic: sea surface conditions reconstructed by GLAMAP-2000. Paleoceanography 18(3), 1–28 (2003). Scholar
  19. 19.
    Nürnberg, D., Bijma, J., Hemleben, C.: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim. Cosmochim. Acta 60(5), 803–814 (1996)CrossRefGoogle Scholar
  20. 20.
    Voelker, A., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M., Schleicher, M.: Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: implications for radiocarbon calibration beyond 25 kyr. Proc. 16th Int. 14C Conf. Radiocarb. 40, 517–534 (1998)Google Scholar
  21. 21.
    Sarnthein, M., Stattegger, K., Dreger, D., Erlenkeuser, H., Grootes, P., Haupt, B., Jung, S., Kiefer, T., Kuhnt, W., Pflaumann, U., Schäfer-Neth, C., Schulz, H., Schulz, M., Seidov, D., Simstich, J., van Kreveld-Alfane, S., Vogelsang, E., Völker, A., Weinelt, M.: Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky—concepts, reconstruction, and numerical modelling. In: Schäfer, P., et al. (eds.) The Northern North Atlantic: A Changing Environment, pp. 365–410. Springer Verlag (2001)Google Scholar
  22. 22.
    Haug, G.H., Sigman, D.M., Tiedemann, R., Pederson, T., Sarnthein, M.: A biogenic silica record of the onset of halocline stratification on in the subpolar North Pacific 2.73 Ma. Nature 401, 779–782 (1999)CrossRefGoogle Scholar
  23. 23.
    Schouten, S., Hopmans, E.C., Schefus, E., Damste, S.: Distributional variation in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265 (2002)CrossRefGoogle Scholar
  24. 24.
    Eiler, J.M.: ‘Clumped-isotope’ geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262, 309–327 (2007)CrossRefGoogle Scholar
  25. 25.
    Klochko, K., Kaufman, A.J., Yao, W., Byrne, R.H., Tossell, J.A.: Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006)CrossRefGoogle Scholar
  26. 26.
    Kennett, D.J., Kennett, J.P., West, A., Mercer, C., Que Hee, S.S., Bement, L., Bunch, T.E., Sellers, M., Wolbach, W.S.: Nanodiamonds in the Younger Dryas boundary sediment layer. Science 323, 94 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Geosciences, University of KielKielGermany

Personalised recommendations