Advertisement

The Clebsch Representation in Optimal Control and Low Rank Integrable Systems

  • Anthony M. BlochEmail author
  • François Gay-Balmaz
  • Tudor S. Ratiu
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

Certain kinematic optimal control problems (the Clebsch problems) and their connection to classical integrable systems are considered. In particular, the rigid body problem and its rank 2k counterparts, the geodesic flows on Stiefel manifolds and their connection with the work of Moser, flows on symmetric matrices, and the Toda flows are studied.

Notes

Acknowledgements

AMB was partially supported by NSF grants DMS-1613819, AFSOR grant 9550-18-0028, INSPIRE 1343720 and the Simons Foundation. FGB was partially supported by ANR grant GEOMFLUID 14-CE23-0002-01. TSR was partially supported by National Natural Science Foundation of China grant number 11871334 and by Swiss NSF grant NCCR SwissMAP. We thank the referees for their useful comments.

References

  1. 1.
    Adams, M.R., Harnad, J., Previato E.: Isospectral Hamiltonian flows in finite and infinite dimensions. Commun. Math. Phys. 117, 451–500 (1988)CrossRefGoogle Scholar
  2. 2.
    Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math. 38(3), 267–317 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38(3), 318–379 (1980)zbMATHGoogle Scholar
  4. 4.
    Bloch, A.M., Brînzănescu, V., Iserles, A., Marsden, J.E., Ratiu, T.S.: A class of integrable flows on the space of symmetric matrices. Commun. Math. Phys. 290, 399–435 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bloch, A.M., Crouch, P.E.: Optimal control and the full Toda flow. Proc. CDC 36, 1736–1740 (1997). IEEEGoogle Scholar
  6. 6.
    Bloch, A.M., Crouch, P.E., Marsden, J.E., Ratiu, T.S.: Discrete rigid body dynamics and optimal control. Proc. CDC 37, 2249–2254 (1998)Google Scholar
  7. 7.
    Bloch, A.M., Crouch, P.E, Marsden, J.E., Ratiu, T.S.: The symmetric representation of the rigid body equations and their discretization. Nonlinearity 15, 1309–1341 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bloch, A.M., Crouch, P.E., Nordkivst, N., Sanyal, A.K.: Embedded geodesic problems and optimal control for matrix Lie groups. J. Geom. Mech. 3, 197–223 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bloch, A.M., Crouch, P.E., Sanyal, A.K.: A variational problem on Stiefel manifolds. Nonlinearity 19(10), 2247–2276 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bloch, A.M., Gay-Balmaz, F., Ratiu, T.S.: The geometric nature of the Flaschka transformation. Commun. Math. Phys. 352(2), 457–517 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bloch, A.M., Gay-Balmaz, F., Ratiu, T.S.: In progress (2017)Google Scholar
  12. 12.
    Bloch, A.M., Iserles, A.: On an isospectral Lie-Poisson system and its Lie algebra. Found. Comput. Math. 6, 121–144 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brînzănescu, V., Ratiu, T.S.: Algebraic complete integrability of the Bloch-Iserles system. Int. Math. Res. Not. IMRN. 14, 5806–5817 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Deift, P., Li, L.C., Nanda, T., Tomei, C.: The Toda flow on a generic orbit is integrable. Comm. Pure Appl. Math. 39(2), 183–232 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Deift, P., Li, L.C., Tomei, C.: Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions. Mem. Amer. Math. Soc. 100(479) (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Devaney, R.L.: Transversal homoclinic orbits in an integrable system. Am. J. Math. 100(3), 631–642 (1978)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fedorov, Yu.N., Jovanović, B.: Geodesic flwos and Neumann systems on Stiefel variables: geometry and integrability. Math. Z. 270, 659–698 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Flaschka, H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B (3) 9, 1924–1925 (1974a)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Flaschka, H.: On the Toda lattice. II. Inverse-scattering solution. Progr. Theoret. Phys. 51, 703–716 (1974b)CrossRefGoogle Scholar
  20. 20.
    Gay-Balmaz, F., Ratiu, T.S.: The geometric structure of complex fluids. Adv. Appl. Math. 42(2), 176–275 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gay-Balmaz, F., Ratiu, T.S. Clebsch optimal control formulation in mechanics. J. Geom. Mech. 3(1), 41–79 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gay-Balmaz, F., Tronci, C.: Reduction theory for symmetry breaking with applications to nematic systems. Phys. D 239(20–22), 1929–1947 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gay-Balmaz, F., Tronci, C.: Vlasov moment flows and geodesics on the Jacobi group. J. Math. Phys. 53(12), 36 pp (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology, vol. II. Academic, New York (1973)zbMATHGoogle Scholar
  25. 25.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  26. 26.
    Holm D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jacobi, C.G.J.: Vorlesungen über Dynamik. C.G.J. Jacobi’s Gesammelte Werke, Supplementband herausgegeben von A. Clebsch, zweite revidirte Ausgabe, Druck und Verlag von G. Reimer, Berlin (1884)Google Scholar
  28. 28.
    Manakov, S.V.: Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body. Funct. Anal. Appl. 10, 328–329 (1976)CrossRefGoogle Scholar
  29. 29.
    Martinez, E.: Variational calculus on Lie algebroids. ESIAM Control Optim. Calc. Var. 14, 356–380 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mishchenko, A.S., Fomenko, A.T.: On the integration of the Euler equations on semisimple Lie algebras Sov. Math. Dokl. 17, 1591–1593 (1976)zbMATHGoogle Scholar
  31. 31.
    Moser, J.: Various Aspects of Integrable Hamiltonian Systems. In: Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978). Progress in Mathematics, vol. 8, pp. 233–289. Birkhäuser, Boston (1980)Google Scholar
  32. 32.
    Moser, J.: Geometry of Quadrics and Spectral Theory. In: Chern Symposium 1979 (Proceedings of International Symposium Berkeley, California, 1979), pp. 147–188. Springer, New York/Berlin, 1980CrossRefGoogle Scholar
  33. 33.
    Moser, J., Veselov A.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 217–243 (1991)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Neumann, C.: De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur. J. Reine Angew. Math. 56, 54–66 (1859)Google Scholar
  35. 35.
    Ratiu, T.S.: The motion of the free n-dimensional rigid body. Indiana U. Math. J. 29, 609–627 (1980)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ratiu, T.S.: The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Am. Math. Soc. 264(2), 321–329 (1981)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Uhlenbeck, K.: Minimal 2-spheres and tori in S k, informal preprint (1975)Google Scholar
  38. 38.
    Weinstein, A.: Lagrangian manifolds and groupoids. Fields Inst. Commun. 7, 207–231 (1996)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Anthony M. Bloch
    • 1
    Email author
  • François Gay-Balmaz
    • 2
  • Tudor S. Ratiu
    • 3
    • 4
    • 5
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.CNRS – LMD – IPSL, Ecole Normale SupérieureParisFrance
  3. 3.School of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Section de MathématiquesUniversité de GenéveGenéveSwitzerland
  5. 5.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations