Advertisement

Renormalization: A Quasi-shuffle Approach

  • Frédéric MenousEmail author
  • Frédéric Patras
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

In recent years, the usual BPHZ algorithm for renormalization in perturbative quantum field theory has been interpreted, after dimensional regularization, as a Birkhoff decomposition of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra of amplitudes. We associate in this paper to any such algebra a universal semigroup (different in nature from the Connes-Marcolli “cosmical Galois group”). Its action on the physical amplitudes associated to Feynman graphs produces the expected operations: Bogoliubov’s preparation map, extraction of divergences, renormalization. In this process a key role is played by commutative and noncommutative quasi-shuffle bialgebras whose universal properties are instrumental in encoding the renormalization process.

Notes

Acknowledgements

We acknowledge support from the CARMA grant ANR-12-BS01-0017, “Combinatoire Algébrique, Résurgence, Moules et Applications”and the CNRS GDR “Renormalisation”. We thank warmly K. Ebrahimi-Fard, from whom we learned some years ago already the meaningfulness of Rota–Baxter algebras and their links with quasi–shuffle algebras.

References

  1. 1.
    Aguiar, M., Hsiao, S.K.: Canonical characters on quasi-symmetric functions and bivariate Catalan numbers. Electron. J. Combin. 11(2) (2004/06). Research Paper 15, 34 pp. (electronic)Google Scholar
  2. 2.
    Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math. 142(1), 1–30 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brouder, C., Frabetti, A., Krattenthaler, C.: Non-commutative Hopf algebra of formal diffeomorphisms. Adv. Math. 200(2), 479–524 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. arXiv preprint arXiv:1610.08468 (2016)Google Scholar
  5. 5.
    Cartier, P.: A primer of Hopf algebras. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry II, pp. 537–615. Springer, Berlin/Heidelberg (2017)Google Scholar
  6. 6.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000)zbMATHGoogle Scholar
  7. 7.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Connes, A., Marcolli, M.: From physics to number theory via noncommutative geometry. In: Cartier, P.E., Julia, B., Moussa, P., Vanhove, P. (eds.) Frontiers in Number Theory, Physics, and Geometry. I, pp. 269–347. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. 9.
    Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization Annales Henri Poincar 11(5), 943–971 (2010)Google Scholar
  10. 10.
    Ebrahimi-Fard, K., Patras, F.: Exponential Renormalization II: Bogoliubov’s R-operation and momentum subtraction schemes. J. Math. Phys. 53(8), 15 (2012)CrossRefGoogle Scholar
  11. 11.
    Ebrahimi-Fard, K., Guo, L., Kreimer, D.: Integrable renormalization. I: the ladder case. J. Math. Phys. 45(10), 3758–3769 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ebrahimi-Fard, K., Guo, L., Manchon, D.: Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Commun. Math. Phys. 267(3), 821–845 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ebrahimi-Fard, K., Gracia-Bondia, J., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. 276, 519–549 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ebrahimi-Fard, K., Manchon, D., Patras, F.: A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogolioubov’s recursion. J. Noncommutative Geom. 3(2), 181–222 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ecalle, J.: Singularités non abordables par la géométrie. (French) [Singularities that are inaccessible by geometry] Ann. Inst. Fourier 42(1–2), 73–164 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fauvet, F., Menous, F.: Ecalle’s arborification-coarborification transforms and Connes-Kreimer Hopf algebra. Ann. Sci. Éc. Norm. Supér. (4) 50(1), 39–83 (2017)Google Scholar
  17. 17.
    Figueroa, H., Gracia-Bondia, J.M.: Combinatorial Hopf algebras in quantum field theory. I. Rev. Math. Phys. 17(8), 881–976 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Foissy, L., Patras, F.: Lie theory for quasi-shuffle bialgebras. In: Periods in Quantum Field Theory and Arithmetic. Springer Proceedings in Mathematics and Statistics (to appear)Google Scholar
  19. 19.
    Frabetti, A., Manchon, D.: Five interpretations of Fa Di Bruno’s formula. In: Dyson-Schwinger Equations and Fa Di Bruno Hopf Algebras in Physics and Combinatorics, edited by European Mathematical Society, pp. 5–65. Strasbourg, France (2011)Google Scholar
  20. 20.
    Guo, L., Zhang, B.: Renormalization of multiple zeta values. J. Algebra 319(9), 3770–3809 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Karandikar, R.L.: Multiplicative decomposition of non-singular matrix valued continuous semimartingales. Ann. Probab. 10(4), 1088–1091 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kreimer, D.: Chen’s iterated integral represents the operator product expansion. Adv. Theor. Math. Phys. 3(3), 627–670 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  27. 27.
    Manchon, D., Paycha, S.: Shuffle relations for regularised integrals of symbols. Commun. Math. Phys. 270, 13–51 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Menous, F.: On the stability of some groups of formal diffeomorphisms by the Birkhoff decomposition. Adv. Math. 216(1), 1–28 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Menous, F.: Formal differential equations and renormalization. Connes, Alain (ed.) et al., Renormalization and Galois theories. European Mathematical Society, IRMA Lectures in Mathematics and Theoretical Physics 15, 229–246 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Menous, F.: Formulas for the Connes-Moscovici Hopf Algebra. In: Ebrahimi-Fard, K., et al. (eds.) Combinatorics and Physics. Contemporary Mathematics, vol. 539, pp. 269–285 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Menous, F.: From dynamical systems to renormalization. J. Math. Phys. 54(9), 24 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Menous, F., Patras, F.: Logarithmic derivatives and generalized Dynkin operators. J. Algebraic Combin. 38(4), 901–913 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Murua, A., Sanz-Serna, J.M.: Computing normal forms and formal invariants of dynamical systems by means of word series. Nonlinear Anal. Theory Methods Appl. 138, 326–345 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Patras, F.: L’algèbre des descentes d’une bigèbre graduée. J. Algebra 170(2), 547–566 (1994)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Patras, F.: Dynkin operators and renormalization group actions in pQFT. In: Bergvelt, M., Yamskulna, G., Zhao, W. (eds.) Vertex Operator Algebras and Related Areas. Contemporary Mathematics, vol. 497, pp. 169–184. American Mathematical Society, Providence (2009)CrossRefGoogle Scholar
  36. 36.
    Schützenberger, M.-P.: Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil–Jacotin Pisot (Algèbre et théorie des nombres) (1958/1959)Google Scholar
  37. 37.
    Sweedler, M.E.: Hopf algebras. W.A. Benjamin, Inc., New York (1969)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathmatiques d’Orsay, University of Paris-Sud, CNRSUniversit Paris-SaclayOrsayFrance
  2. 2.Laboratoire J.A. DieudonnéUniversité de la Côte d’Azur, CNRS, UMR 7531Nice Cedex 2France

Personalised recommendations