Advertisement

An Analyst’s Take on the BPHZ Theorem

  • Martin Hairer
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

We provide a self-contained formulation of the BPHZ theorem in the Euclidean context, which yields a systematic procedure to “renormalise” otherwise divergent integrals appearing in generalised convolutions of functions with a singularity of prescribed order at their origin. We hope that the formulation given in this article will appeal to an analytically minded audience and that it will help to clarify to what extent such renormalisations are arbitrary (or not). In particular, we do not assume any background whatsoever in quantum field theory and we stay away from any discussion of the physical context in which such problems typically arise.

Notes

Acknowledgements

The author would like to thank Ajay Chandra and Philipp Schönbauer for several useful discussions during the preparation of this article. Financial support through ERC consolidator grant 615897 and a Leverhulme leadership award is gratefully acknowledged.

References

  1. 1.
    Bogoliubow, N.N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math. 97, 227–266 (1957). https://doi.org/10.1007/BF02392399 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures (2016). ArXiv e-prints. http://arxiv.org/abs/1610.08468
  3. 3.
    Chandra, A., Hairer, M.: An analytic BPHZ theorem for regularity structures (2016). ArXiv e-prints. http://arxiv.org/abs/1612.08138
  4. 4.
    Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199(1), 203–242 (1998). http://arxiv.org/abs/hep-th/9808042, https://doi.org/10.1007/s002200050499 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249–273 (2000). http://arxiv.org/abs/hep-th/9912092, https://doi.org/10.1007/s002200050779 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215–241 (2001). http://arxiv.org/abs/hep-th/0003188, https://doi.org/10.1007/PL00005547 MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Calan, C., Rivasseau, V.: Local existence of the Borel transform in Euclidean \(\Phi ^{4}_{4}\). Commun. Math. Phys. 82(1), 69–100 (1981/1982)Google Scholar
  8. 8.
    Dyson, F.J.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. (2) 75, 486–502 (1949).  https://doi.org/10.1103/PhysRev.75.486 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dyson, F.J.: The S matrix in quantum electrodynamics. Phys. Rev. (2) 75, 1736–1755 (1949).  https://doi.org/10.1103/PhysRev.75.1736 CrossRefGoogle Scholar
  10. 10.
    Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 211–295 (1973/1974)Google Scholar
  11. 11.
    Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Bounds on renormalized Feynman graphs. Commun. Math. Phys. 100(1), 23–55 (1985). https://doi.org/10.1007/BF01212686 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields. I. Commun. Math. Phys. 100(4), 545–590 (1985)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gallavotti, G., Nicolò, F.: Renormalization theory in four-dimensional scalar fields. II. Commun. Math. Phys. 101(2), 247–282 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014). http://arxiv.org/abs/1303.5113, https://doi.org/10.1007/s00222-014-0505-4 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hairer, M.: The motion of a random string (2016). ArXiv e-prints. http://arxiv.org/abs/1605.02192
  16. 16.
    Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ (2015). ArXiv e-prints. http://arxiv.org/abs/1512.07845
  17. 17.
    Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2(4), 301–326 (1966). https://doi.org/10.1007/BF01773358 CrossRefGoogle Scholar
  18. 18.
    Salam, A.: Divergent integrals in renormalizable field theories. Phys. Rev. (2) 84, 426–431 (1951).  https://doi.org/10.1103/PhysRev.84.426 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Salam, A.: Overlapping divergences and the S-matrix. Phys. Rev. (2) 82, 217–227 (1951).  https://doi.org/10.1103/PhysRev.82.217 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Weinberg, S.: High-energy behavior in quantum field-theory. Phys. Rev. (2) 118, 838–849 (1960).  https://doi.org/10.1103/PhysRev.118.838 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zimmermann, W.: Convergence of Bogoliubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969). https://doi.org/10.1007/BF01645676 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Mathematics InstituteImperial CollegeLondonUK

Personalised recommendations