Advertisement

Pre- and Post-Lie Algebras: The Algebro-Geometric View

  • Gunnar FløystadEmail author
  • Hans Munthe-Kaas
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)

Abstract

We relate composition and substitution in pre- and post-Lie algebras to algebraic geometry. The Connes-Kreimer Hopf algebras and MKW Hopf algebras are then coordinate rings of the infinite-dimensional affine varieties consisting of series of trees, resp. Lie series of ordered trees. Furthermore we describe the Hopf algebras which are coordinate rings of the automorphism groups of these varieties, which govern the substitution law in pre- and post-Lie algebras.

Notes

Acknowledgements

We would like to thank Kurusch Ebrahimi-Fard, Kristoffer Føllesdal and Frédéric Patras for discussions on the topics of this paper.

References

  1. 1.
    Bogfjellmo, G., Schmeding, A.: The Lie group structure of the butcher group. Found. Comput. Math. 17(1), 127–159 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3(2), 185–201 (1963)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282–308 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001(8), 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chartier, P., Harirer, E., Vilmart, G.: A substitution law for B-series vector fields. Technical Report 5498, INRIA (2005)Google Scholar
  7. 7.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer, New York (1992)CrossRefGoogle Scholar
  8. 8.
    Ebrahimi-Fard, K., Manchon, D.: Twisted dendriform algebras and the pre-Lie Magnus expansion. J. Pure Appl. Algebra 215(11), 2615–2627 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ebrahimi-Fard, K., Patras, F.: The pre-Lie structure of the time-ordered exponential. Lett. Math. Phys. 104(10), 1281–1302 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.Z.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Foissy, L.: Chromatic polynomials and bialgebras of graphs. arXiv preprint:1611.04303 (2016)Google Scholar
  12. 12.
    Foissy, L.: Commutative and non-commutative bialgebras of quasi-posets and applications to ehrhart polynomials. arXiv preprint:1605.08310 (2016)Google Scholar
  13. 13.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hairer, E.: Backward analysis of numerical integrators and symplectic methods. Ann. Numer. Math. 1, 107–132 (1994)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, Berlin/New York (2006)Google Scholar
  16. 16.
    Hartshorne, R.: Algebraic geometry. Graduate texts in mathematics, vol. 52. Springer, New York (2013)Google Scholar
  17. 17.
    Lundervold, A., Munthe-Kaas, H.: Hopf algebras of formal diffeomorphisms and numerical integration on manifolds. Contemp. Math. 539, 295–324 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lundervold, A., Munthe-Kaas, H.: Backward error analysis and the substitution law for Lie group integrators. Found. Comput. Math. 13(2), 161–186 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Manchon, D.: A short survey on pre-Lie algebras. In: Carey, A. (ed.) Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, pp. 89–102. Switzerland European Mathematical Society Publishing House, Zuerich (2011)CrossRefGoogle Scholar
  20. 20.
    Manchon, D.: On bialgebras and hopf algebras of oriented graphs. Confluentes Mathematici 4(1), 1240003 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Munthe-Kaas, H., Krogstad, S.: On enumeration problems in Lie–Butcher theory. Futur. Gener. Comput. Syst. 19(7), 1197–1205 (2003)CrossRefGoogle Scholar
  22. 22.
    Munthe-Kaas, H., Stern, A., Verdier, O.: Past-Lie algebroids and Lie algebra actions. (To appear, 2018)Google Scholar
  23. 23.
    Munthe-Kaas, H.Z., Føllesdal, K.K.: Lie-Butcher series, Geometry, Algebra and Computation. arXiv preprint:1701.03654 (2017)Google Scholar
  24. 24.
    Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)zbMATHGoogle Scholar
  25. 25.
    Munthe-Kaas, H.Z., Wright, W.M.: On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8(2), 227–257 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-theory K-theory Appl. Algebra Geom. Topol. 2(1), 147–167 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Reutenauer, C.: Free Lie algebras. Handb. Algebra 3, 887–903 (2003)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vinberg, È.B.: The theory of homogeneous convex cones. Trudy Moskovskogo Matematicheskogo Obshchestva 12, 303–358 (1963)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Matematisk InstituttRealfagbyggetBergenNorway

Personalised recommendations