Advertisement

A Proof of a Result of L. Boutet de Monvel

  • Gilles LebeauEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 269)

Abstract

We give a detailed proof of a theorem of L. Boutet de Monvel formulated in 1978 in (C.R.A.S. Paris, t.287, série A, 855–856, 1978) [2] about the convergence in the complex domain of sums of eigenfunctions of the Laplace operator on a compact analytic manifold.

References

  1. 1.
    Berard, P.: On the wave equation without conjugate points. Math. Zeit. 155, 249–276 (1977)Google Scholar
  2. 2.
    Boutet de Monvel, L.: Convergence dans le domaine complexe des séries de fonctions propres. C.R.A.S. Paris, t.287, série A, 855–856 (1978)Google Scholar
  3. 3.
    Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampere equation. J. Differ. Geom. 4(2), 561–570 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953)Google Scholar
  5. 5.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Grundlehren der mathematischen Wissenschaften, vol. 275. Springer, Berlin (1985)Google Scholar
  6. 6.
    Golse (F.), Leichtnam, E., Stenzel, M.: Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds. Ann. Sci. Ec. Nom. Sup. (4) 29(6), 669–736 (1996)Google Scholar
  7. 7.
    Lempert, L., Szöke, R.: Global solutions of the homogeneous complex Monge- Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4), 689–712 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Schapira, P.: Conditions de positivité dans une variété symplectique complexe. Applications à l’étude des microfonctions. Ann. Sci. Ec. Nom. Sup. 14, 121–139 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and Pseudo-differential equations. In: Proceedings of the Conference at Katata. Lectures notes in Mathematics, vol. 287, pp. 264–524. Springer, Berlin (1971)Google Scholar
  11. 11.
    Sjöstrand, J.: Singularités analytiques microlocales.- Astérisque, 95, pp. 1–166. Société mathématique de France, Paris (1982)Google Scholar
  12. 12.
    Stenzel, M.: On the analytic continuation of the Poisson Kernel. Manuscripta Math. 144, 253–276 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zelditch, S.: Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I. Spectral geometry. In: Proceedings of Symposia in Pure Mathematics, vol. 84, pp. 299–339. American Mathematical Society, Providence (2012)Google Scholar
  14. 14.
    Zerner, M.: Domaine d’holomorphie des fonctions vérifiant une équation aux dérivées partielles.– C.R.A.S. Paris, t.272, série A, pp. 1646–1648 (1971)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de Nice Sophia-AntipolisNice Cedex 02France

Personalised recommendations