Advertisement

Two Minicourses on Analytic Microlocal Analysis

  • Michael HitrikEmail author
  • Johannes Sjöstrand
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 269)

Abstract

These notes correspond roughly to the two minicourses prepared by the authors for the workshop on Analytic Microlocal Analysis, held at Northwestern University in May 2013. The first part of the text gives an elementary introduction to some global aspects of the theory of metaplectic FBI transforms, while the second part develops the general techniques of the analytic microlocal analysis in exponentially weighted spaces of holomorphic functions.

Notes

Acknowledgements

The first author would like to thank Michael Hall for providing him with some notes which were used in the preparation of the present text. We thank the referee for the useful and stimulating remarks and suggestions.

References

  1. 1.
    Andersson, K.G.: Propagation of analyticity of solutions of partial differential equations with constant coefficients. Ark. f. Matematik. 8, 277–302 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bony, J.-F., Fujiié, S., Ramond, T., Zerzeri, M.: Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances. Ann. Inst. Fourier (Grenoble) 61 (2011); No. 4, 1351–1406 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boutet de Monvel, L., Krée, P.: Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble) 17(1), 295–323 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bros, J., Iagolnitzer, D.: Tuboïdes et structure analytique des distributions. II. Support essentiel et structure analytique des distributions (French) Séminaire Goulaouic–Lions–Schwartz 1974–1975: Équations aux dérivées partielles linéaires et non linéaires, Exp. No. 18, 34 pp. Centre Math., École Polytech., Paris, 1975Google Scholar
  5. 5.
    Caliceti, E., Graffi, S., Hitrik, M., Sjöstrand, J.: Quadratic \({\cal{PT}}\)- symmetric operators with real spectrum and similarity to self-adjoint operators. J. Phys. A Math. Theor. 45, 444007 (2012)Google Scholar
  6. 6.
    Cordoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. PDE 3, 979–1005 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dencker, N., Sjöstrand, J., Zworski, M.: Pseudo-spectra of semiclassical (pseudo-) differential operators. Commun. Pure Appl. Math. 57(3), 384–415 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press, Cambridge (1999)Google Scholar
  9. 9.
    Ehrenpreis, L.: Solutions of some problems of division IV. Invertible and elliptic operators. Am. J. Math. 82, 522–588 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)zbMATHGoogle Scholar
  11. 11.
    Gérard, C., Sjöstrand, J.: Semiclassical resonances generated by a closed trajectory of hyperbolic type. Commun. Math. Phys. 108, 391–421 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gérard, C., Sjöstrand, J.: Résonances en limite semiclassique et exposants de Lyapunov. Commun. Math. Phys. 116, 193–213 (1988)zbMATHCrossRefGoogle Scholar
  13. 13.
    Grigis, A., Sjöstrand, J.: Front d’onde analytique et sommes de carrés de champs de vecteurs. Duke Math. J. 52(1), 35–51 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Grigis, A., Sjöstrand, J.: Microlocal Analysis for Differential Operators. Cambridge University Press, Cambridge (1994)Google Scholar
  15. 15.
    Grigis, A., Schapira, P., Sjöstrand, J.: Propagation de singularités analytiques pour des opérateurs caractéristiques multiples. C. R. Acad. Sci. Paris Sér. I Math. 293(8), 397–400 (1981)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hanges, N.: Propagation of analyticity along real bicharacteristics. Duke Math. J. 48(1), 269–277 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hanges, N., Sjöstrand, J.: Propagation of analyticity for a class of non-micro-characteristic operators. Ann. Math. 116, 559–577 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Helffer, B., Sjöstrand, J.: Résonances en limite semiclassique. Bull. de la SMF 114(3), Mémoire 24/25 (1986)Google Scholar
  19. 19.
    Helffer, B., Sjöstrand, J.: Semiclassical analysis for Harper’s equation III. Cantor Structure of the spectrum. Bull. de la SMF 117(4), Mémoire no 39 (1989)Google Scholar
  20. 20.
    Hitrik, M.: Boundary spectral behavior for semiclassical operators in dimension one. Int. Math. Res. Not. 64, 3417–3438 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hitrik, M., Sjöstrand, J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions I. Ann. Henri Poincaré 5(1), 1–73 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hitrik, M., Sjöstrand, J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions II. Vanishing averages. Commun. Partial Differ. Equ. 30(7–9), 1065–1106 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    Hitrik, M., Sjöstrand, J.: Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions IIIa. One branching point. Canad. J. Math. 60(3), 572–657 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hitrik, M., Sjöstrand, J.: Rational invariant Tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2. Annales Sci ENS, sér. 4 41(4), 511–571 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hitrik, M., Sjöstrand, J.: Diophantine tori and Weyl laws for non-selfadjoint operators in dimension two. Commun. Math. Phys. 314(2), 373–417 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hitrik, M., Sjöstrand, J.: Rational invariant Tori and band edge spectra for non-selfadjoint operators. Preprint (2015)Google Scholar
  27. 27.
    Hitrik, M., Sjöstrand, J., Vũ, S.: Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators. Am. J. Math. 129(1), 105–182 (2007)zbMATHCrossRefGoogle Scholar
  28. 28.
    Hitrik, M., Caliceti, E., Graffi, S., Sjöstrand, J.: Quadratic PT–symmetric operators with real spectrum and similarity to self-adjoint operators. J. Phys. A Math. Theor. 45, 444007 (2012). Special issue of Journal of Physics A: Mathematical and Theoretical, Dedicated to Quantum Physics with Non-Hermitian OperatorsGoogle Scholar
  29. 29.
    Hörmander, L.: Differential equations without solutions. Math. Ann. 140, 169–173 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hörmander, L.: Differential operators of principal type. Math. Ann. 140, 124–146 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Hörmander, L.: On the existence and the regularity of solutions of linear pseudo-differential equations. Ens. Math. 17, 99–163 (1971)Google Scholar
  32. 32.
    Hörmander, L.: On the existence and the regularity of solutions of linear pseudo-differential equations. In: Série des Conférences de l’Union Mathématique Internationale, No. 1. Monographie No. 18 de l’Enseignement Mathématique. Secrétariat de l’Enseignement Mathématique, Université de Genève, Geneva, 69 pp. (1971)Google Scholar
  33. 33.
    Hörmander, L.: Uniqueness theorems and wave front sets for soutions of linear partial differential equations with analytic coefficients. Commun. Pure Appl. Math. 24, 671–704 (1971)zbMATHCrossRefGoogle Scholar
  34. 34.
    Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Mathematical Library, 3rd ed., vol. 7. North-Holland Publishing Co., Amsterdam (1990)Google Scholar
  35. 35.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)Google Scholar
  36. 36.
    Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, vol. 1495, pp. 118–160. Springer, Berlin (1991)CrossRefGoogle Scholar
  37. 37.
    Iagolnitzer, D., Stapp, H.P.: Macroscopic causality and physical region analyticity in S-matrix theory. Commun. Math. Phys. 14, 15–55 (1969)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Kaidi, N., Rouleux, M.: Forme normale d’un hamiltonien à deux niveaux près d’un point de branchement (limite semi-classique). C. R. Acad. Sci. Paris Sér. I Math. 317(4), 359–364 (1993)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Kenig, C., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Lahmar-Benbernou, A., Martinez, A.: On Helffer–Sjöstrand’s theory of resonances. Int. Math. Res. Not. 2002(13), 697–717Google Scholar
  41. 41.
    Lahmar-Benbernou, A., Martinez, A.: Semiclassical asymptotics of the residues of the scattering matrix for shape resonances. Asymptot. Anal. 20(1), 13–38 (1999)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Lascar, B., Lascar, R.: Propagation des singularités Gevrey pour la diffraction. Commun. Partial Differ. Equ. 16(4–5), 547–584 (1991)zbMATHCrossRefGoogle Scholar
  43. 43.
    Lebeau, G.: Régularité Gevrey \(3\) pour la diffraction. Commun. Partial Differ. Equ. 9(15), 1437–1494 (1984)zbMATHCrossRefGoogle Scholar
  44. 44.
    Mandelbrojt, S.: Analytic functions and classes of infinitely differentiable functions. Rice Inst. Pamphlet No. 29:1 (1942)Google Scholar
  45. 45.
    Mandelbrojt, S.: Séries adhérentes. Régularisation des suites. Applications. Gauthier-Villars (1952)Google Scholar
  46. 46.
    Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Universitext. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  47. 47.
    Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations. Adv. Math. 222(4), 1277–1307 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations II-long range perturbations. Commun. Partial Differ. Equ. 35(12), 2279–2309 (2010)zbMATHCrossRefGoogle Scholar
  49. 49.
    Melin, A., Sjöstrand, J.: Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–238 (2002)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Melin, A., Sjöstrand, J.: Bohr–Sommerfeld quantization condition for non-selfadjoint operators in dimension 2. Astérisque 284, 181–244 (2003)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Melrose, R., Sjöstrand, J.: Singularities of boundary value problems I. CPAM 31(5), 593–617 (1978)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Melrose, R., Sjöstrand, J.: Singularities of boundary value problems II. CPAM 35, 129–168 (1982)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Métivier, G.: Analytic hypoellipticity for operators with multiple characteristics. Commun. Partial Differ. Equ. 6(1), 1–90 (1981)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rauch, J., Sjöstrand, J.: Propagation of analytic singularities along diffracted rays. Indiana Univ. Math. J. 30(3), 283–401 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Rouleux, M.: Resonances for a semi-classical Schrödinger operator near a non-trapping energy level. Publ. Res. Inst. Math. Sci. 34(6), 487–523 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Rouleux, M.: Tunneling effects for h-pseudodifferential operators, Feshbach resonances, and the Born-Oppenheimer approximation. Evolution Equations, Feshbach Resonances, Singular Hodge Theory. Mathematical Topics, vol. 16, pp. 131–242. Wiley-VCH, Berlin (1999)Google Scholar
  57. 57.
    Rouleux, M.: Absence of resonances for semiclassical Schrödinger operators with Gevrey coefficients. Hokkaido Math. J. 30(3), 475–517 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Sato, M., Kawai, T., Kashiwara, M.: Microfunctions and pseudo-differential equations. Hyperfunctions and Pseudo-Differential Equations (Proc. Conf., Katata, 1971). Lecture Notes in Mathematics, vol. 287, pp. 265–529. Springer, Berlin (1973)Google Scholar
  59. 59.
    Sjöstrand, J., Uhlmann, G.: Local analytic regularity in the linearized Calderón problem. Anal. PDE 9(3), 515–544 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Sjöstrand, J.: Propagation of analytic singularities for second order Dirichlet problems. Commun. PDE 5(1), 41–94 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Sjöstrand, J.: Propagation of analytic singularities for second order Dirichlet problems II. Commun. PDE 5(2), 187–207 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Sjöstrand, J.: Analytic singularities and microhyperbolic boundary value problems. Math. Ann. 254, 211–256 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Sjöstrand, J.: Analytic singularities of solutions of boundary value problems. Singularities in Boundary Value Problems, pp. 235–269. Reidel Publishing Co. (1981)Google Scholar
  64. 64.
    Sjöstrand, J.: Propagation of analytic singularities for second order Dirichlet problems III. Commun. PDE 6(5), 499–567 (1981)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Sjöstrand, J.: Singularités analytiques microlocales. Astérisque 95, 1–166 (1982). Soc. Math. France, PariszbMATHGoogle Scholar
  66. 66.
    Sjöstrand, J.: Analytic wavefront sets and operators with multiple characteristics. Hokkaido Math. J. 12(3), 392–433 (1983). Part 2MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Sjöstrand, J.: Semiclassical resonances generated by a non-degenerate critical point. Springer LNM, vol. 1256, pp. 402–429 (1987)Google Scholar
  68. 68.
    Sjöstrand, J.: Estimates on the number of resonances for semiclassical Schrödinger operators. In: Proceedings of the 8th Latin-American School of Mathematics 1986. Springer LNM, vol. 1324, pp. 286–292 (1988)Google Scholar
  69. 69.
    Sjöstrand, J.: Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60(1), 1–57 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Sjöstrand, J.: Function spaces associated to global I-Lagrangian manifolds. Structure of Solutions of Differential Equations, Katata/Kyoto, 1995, pp. 369–423. World Scientific, Singapore (1996)Google Scholar
  71. 71.
    Sjöstrand, J.: Density of resonances for strictly convex analytic obstacles. Canad. J. Math. 48(2), 397–447 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Sjöstrand, J.: Quantum resonances and trapped trajectories. Long Time Behaviour of Classical and Quantum Systems. In: Proceedings of the Bologna APTEX International Conference, 13–17 September 1999. Series on Concrete and Applicable Mathematics, vol. 1, pp. 33–61. World Scientific, Singapore (2001)Google Scholar
  73. 73.
    Sjöstrand, J.: Lectures on Resonances. Lecture Notes (2002). http://sjostrand.perso.math.HrBcnrs.fr/HrB
  74. 74.
    Sjöstrand, J.: Pseudodifferential operators and weighted normed symbol spaces. Serdica Math. J. 34(1), 1–38 (2008)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Tartakoff, D.S.: The local real analyticity of solutions to \(\square _{b}\) and the \(\bar{\partial }\)- Neumann problem. Acta Math. 145(3–4), 177–204 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Trèves, F.: Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the \(\overline{\partial }\)- Neumann problem. Commun. Partial Differ. Equ. 3(6–7), 475–642 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators: Pseudodifferential Operators. The University Series in Mathematics, vol. 1. Plenum Press, New York (1980)zbMATHCrossRefGoogle Scholar
  78. 78.
    Zworski, M.: Semiclassical Analysis. American Mathematical Society, Providence (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.IMB, Université de Bourgogne, UMR 5584, CNRSDijon CedexFrance

Personalised recommendations