A Spatiotemporal Approach for Predicting Wind Speed Along the Coast of Valparaiso, Chile

  • Orietta NicolisEmail author
  • Mailiu Díaz
  • Omar Cuevas
Conference paper


In this work we propose a spatio-temporal approach for predicting the wind speed nearby the coast of Valparaiso, Chile, by using the observations collected by some meteorological stations and the output of a Weather Research and Forecasting (WRF) model. A cross validation study is implemented for evaluating the performance of the model.


Spatio-temporal model Wind speed WRF output Cross-validation 



This work is partially supported by the Interdisciplinary Center for Atmospheric and Astro Statistical Studies.


  1. 1.
    Bergen S, Lindström J (2013) Comprehensive tutorial for the spatio-temporal R-package. Retrieved from
  2. 2.
    Carlin BP, Clark JS, Gelfand AE (2006) Hierarchical modelling for the environmental sciences: statistical methods and applications. Oxford University Press, Inc., New YorkGoogle Scholar
  3. 3.
    Casquilho-Resende CM, Le ND, Zidek JV (2016) Spatio-temporal modelling of temperature fields in the pacific northwest. ArXiv e-printsGoogle Scholar
  4. 4.
    Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the penn state–ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585CrossRefGoogle Scholar
  5. 5.
    Craimile PF, Guttorp P (2011) Space-time modelling of trends in temperature series. J Time Ser Anal 32:378–395MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fassò A, Cameletti M, Nicolis O (2007) Air quality monitoring using heterogeneous networks. Environmetrics 18(3):245–264MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fuentes M, Guttorp P, Sampson PD (2006) Using transforms to analyze space-time processes. In: Finkenstadt B, Held L, Isham V (eds) Statistical methods for spatio-temporal systems. CRC Chapman and Hall, Boca RatonGoogle Scholar
  8. 8.
    Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120CrossRefGoogle Scholar
  9. 9.
    Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103CrossRefGoogle Scholar
  10. 10.
    Lindström J, Szpiro AA, Sampson PD, Oron AP, Richards M, Larson TV, Sheppard L (2014) A flexible spatio-temporal model for air pollution with spatial and spatio-temporal covariates. Environ Ecol Stat 21(3):411–433MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nychka D, Furrer R, Paige J, Sain S (2017) fields: Tools for spatial data. R package version 9.6.
  12. 12.
    Sahu SK, Bakar K (2012) A comparison of Bayesian models for daily ozone concentration levels. Stat Methodol 9:144–157MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sahu SK, Nicolis O (2009) An evaluation of European air pollution regulations for particulate matter monitored from a heterogeneous network. Environmetrics 20(8):943–961MathSciNetGoogle Scholar
  14. 14.
    Sahu S, Gelfand A, Holland D (2007) High-resolution space-time ozone modeling for assessing trends. J Am Stat Assoc 102(480):1221–1234MathSciNetCrossRefGoogle Scholar
  15. 15.
    Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical note -475+STRGoogle Scholar
  16. 16.
    Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound-Layer Meteorol 117(2):231–257CrossRefGoogle Scholar
  17. 17.
    Tastu J, Pinson P, Trombe PJ, Madsen H (2014) Probabilistic forecasts of wind power generation accounting for geographically dispersed information. IEEE Trans Smart Grid 5(1):480–489CrossRefGoogle Scholar
  18. 18.
    The GFS Atmospheric Model (2004) Office note. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service National Centers for Environmental PredictionGoogle Scholar
  19. 19.
    Wood SN (2003) Thin plate regression splines. J R Stat Soc Ser B Stat Methodol 65(1):95–114MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity Andres BelloSantiagoChile
  2. 2.Institute of StatisticsUniversity of ValparaisoValparaisoChile
  3. 3.Institute of Physics and AstronomyValparaisoChile

Personalised recommendations