Advertisement

Modeling Spatiotemporal Mismatch for Aerosol Profiles

  • Ilia NegriEmail author
  • Alessandro Fassò
  • Lucia Mona
  • Nikolaos Papagiannopoulos
  • Fabio Madonna
Conference paper

Abstract

The horizontal smoothing impact on the uncertainty term between the satellite and the ground measurement of the aerosol layers is investigated. Nine different horizontal averaging schemes for the CALIPSO aerosol profiles are used in order to investigate the influence of horizontal smoothing of CALIPSO data when compared against the EARLINET data.

Keywords

Data comparison Uncertainty CALIOP measurements EARLINET measurements 

Notes

Acknowledgements

This research is partially funded by GAIA-CLIM, the project funded from the European Union’s Horizon 2020 research and innovation program under grant agreement No 640276.

References

  1. 1.
    Alados-Arboledas L, Muller D, Guerrero-Rascado JL, Navas-Guzman F, Perez-Ramirez D, Olmo FJ (2011) Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman LIDAR, and star-and sun-photometry. Geophys Res Lett 38. https://doi.org/10.1029/2010GL045999 CrossRefGoogle Scholar
  2. 2.
    Anderson T, Charlson R, Winker D, Ogren J, Holmén K (2003) Mesoscale variations of tropospheric. Aerosols J Atmos Sci 60:119–136. https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2 CrossRefGoogle Scholar
  3. 3.
    Fassò A, Ignaccolo R, Madonna F, Demoz B, Franco-Villoria M ( 2014). Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles. Atmos Meas Tech 7:1803–1816CrossRefGoogle Scholar
  4. 4.
    Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning MR, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, New York, pp 131–217Google Scholar
  5. 5.
    Guerrero-Rascado JL, Ruiz B, Alados Arboledas L (2008). Multi-spectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmos Environ 42:2668–2681. https://doi.org/10.1016/j.atmosenv.2007.12.062 CrossRefGoogle Scholar
  6. 6.
    Huang J, Hsu NC, Tsay SC, Liu Z, Jeong MJ, Hansell RA, Lee J (2011) Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems. J Geophys Res 117:D15204. https://doi.org/10.1029/2012JD017757 Google Scholar
  7. 7.
    Huang J et al (2012) Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. J Geophys Res 116:D08214Google Scholar
  8. 8.
    Huang J et al (2013) Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS collection 5 aerosol products. J Geophys Res Atmos 118:6444–6453.  https://doi.org/10.1002/jgrd.50504 CrossRefGoogle Scholar
  9. 9.
    Iarlori M, Madonna F, Rizi V, Trickl T, Amodeo A (2015) Effective resolution concepts for lidar observations. Atmos Meas Tech 8:5157–5176.  https://doi.org/10.5194/amt-8-5157-2015 CrossRefGoogle Scholar
  10. 10.
    Ignaccolo R, Franco-Villoria M, Fassò A (2015) Modelling collocation uncertainty of 3D atmospheric profiles. Stoch Env Res Risk Assess 29(2):417–429CrossRefGoogle Scholar
  11. 11.
    Kittaka C, Winker DM, Vaughan MA, Omar A, Remer LA (2011) Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmos Meas Tech 4:131–141.  https://doi.org/10.5194/amt-4-131-2011 CrossRefGoogle Scholar
  12. 12.
    Mona L, Pappalardo G, Amodeo A, D’Amico G, Madonna F, Boselli A, Giunta A, Russo F, Cuomo V (2009) One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: level 1 products com-parison. Atmos Chem Phys 9:7213–7228.  https://doi.org/10.5194/acp-9-7213-2009 CrossRefGoogle Scholar
  13. 13.
    Omar A, Winker D, Kittaka C, Vaughan M, Liu Z, Hu YX, Trepte C, Rogers R, Ferrare R, Lee K, Kuehn R, Hostetler, C (2009) The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Tech 26:1994–2014. https://doi.org/10.1175/2009jtecha1231.1 CrossRefGoogle Scholar
  14. 14.
    Papagiannopoulos N, Mona L, Alados-Arboledas L, Amiridis V, Baars H, Binietoglou I, Bortoli D, D’Amico G, Giunta A, Guerrero-Rascado JL, Schwarz A, Pereira S, Spinelli N, Wandinger U, Wang X, Pappalardo G (2016) CALIPSO climatological products: evaluation and suggestions from EARLINET. Atmos Chem Phys 16:2341–2357.  https://doi.org/10.5194/acp-16-2341-2016 CrossRefGoogle Scholar
  15. 15.
    Pappalardo G et al (2010) EARLINET correlative measurements for CALIPSO: first intercomparison results. J Geophys Res 115:D00H19. https://doi.org/10.1029/2009JD012147
  16. 16.
    Pappalardo G, Amodeo A, Apituley A, Comeron A, Freuden-thaler V, Linné H, Ansmann A, Bösenberg J, D’Amico G, Mattis I, Mona L, Wandinger, U, Amiridis, V, Alados-Arboledas L, Nicolae D, Wiegner M (2014) EARLINET: to-wards an advanced sustainable European aerosol lidar network. Atmos Meas Tech 7:2389–2409.  https://doi.org/10.5194/amt-7-2389-2014 CrossRefGoogle Scholar
  17. 17.
    Verhoelst T, Granville J, Hendrick F, Köhler U, Lerot C, Pommereau J-P, Redondas A, Van Roozendael M, Lambert J-C (2015) Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons. Atmos Meas Tech 8:5039–5062.  https://doi.org/10.5194/amt-8-5039-2015 CrossRefGoogle Scholar
  18. 18.
    Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34:L19803. https://doi.org/10.1029/2007GL030135 CrossRefGoogle Scholar
  19. 19.
    Winker DM, Vaughan MA, Omar AH, Hu Y, Powell KA, Liu Z, Hunt WH, Young SA (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Oceanic Technol 26:2310–2323CrossRefGoogle Scholar
  20. 20.
    Winker DM, Pelon J, Coakley Jr, JA, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff R, Kittaka C, Kubar TL, LeTreut H, McCormick MP, Megie G, Poole L, Powell K, Trepte C, Vaughan MA, Wielicki BA (2010) The CALIPSO mission: a global 3D view of aerosols and clouds. Bull Am Meteor Soc 91:1211–1229. https://doi.org/10.1175/2010BAMS3009.1,2010 CrossRefGoogle Scholar
  21. 21.
    Winker DM, Tackett JL, Getzewich BJ, Liu Z, Vaughan MA, Rogers RR (2013) The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos Chem Phys 13:3345–3361.  https://doi.org/10.5194/acp-13-3345-2013 CrossRefGoogle Scholar
  22. 22.
    Young SA (1995) Analysis of lidar backscatter profiles in optically thin clouds Appl Optics 34:7019–7031. https://doi.org/10.1364/AO.34.007019 CrossRefGoogle Scholar
  23. 23.
    Young SA, Vaughan MA (2009) The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description. J Atmos Ocean Tech 26:1105–1119. https://doi.org/10.1175/2008JTECHA1221.1 CrossRefGoogle Scholar
  24. 24.
    Young SA, Vaughan MA, Kuehn RE, Winker DM (2013) The retrieval of profiles of particulate extinction from CloudAerosol Lidar and infrared pathfinder observations (CALIPSO) data: uncertainty and error sensitivity analyses. J Atmos Ocean Tech 30:395–428CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ilia Negri
    • 1
    Email author
  • Alessandro Fassò
    • 1
  • Lucia Mona
    • 2
  • Nikolaos Papagiannopoulos
    • 2
  • Fabio Madonna
    • 2
  1. 1.Department of Management Information and Production EngineeringUniversity of BergamoBergamoItaly
  2. 2.Istituto di Metodologie per l’Analisi Ambientale (IMAA)Consiglio Nazionale delle Ricerche, (CNR)Tito ScaloItaly

Personalised recommendations