Advertisement

Fast Bayesian Classification for Disease Mapping and the Detection of Disease Clusters

  • V. Gómez-RubioEmail author
  • John Molitor
  • Paula Moraga
Conference paper

Abstract

We propose a framework fast method for detecting clusters of disease based on generalized spatial scan statistics set in the context of Bayesian Hierarchical Models. The approach models spatio-temporal clusters of disease as dummy variables as part of a Generalized Linear Mixed Model.

Keywords

Spatial statistics Disease clusters Bayesian inference Integrated nested Laplace approximation 

References

  1. 1.
    Abrams AM, Kulldorff M, Kleinman K (2006). Empirical/asymptotic p-values for monte carlo-based hypothesis testing: an application to cluster detection using the scan statistic. Adv Dis Surveill 1(1):1Google Scholar
  2. 2.
    Ahrens C, Altman N, Casella G, Eaton M, Hwang JTG, Staudenmayer J, Stefanescu C (1999) Leukemia clusters in upstate New York: how adding covariates changes the story. Environmetrics 12(7):659–672CrossRefGoogle Scholar
  3. 3.
    Anderson C, Lee D, Dean N (2014) Identifying clusters in Bayesian disease mapping. Biostatistics 15(3):457–469CrossRefGoogle Scholar
  4. 4.
    Anderson C, Lee D, Dean N (2017) Spatial clustering of average risks and risk trends in Bayesian disease mapping. Biometrical J 59(1):41–56MathSciNetCrossRefGoogle Scholar
  5. 5.
    Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–59MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bilancia M, Demarinis G (2014) Bayesian scanning of spatial disease rates with integrated nested laplace approximation (INLA). Stat Methods Appl 23(1):71–94MathSciNetCrossRefGoogle Scholar
  7. 7.
    Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Ser B 64(4):641–656MathSciNetCrossRefGoogle Scholar
  8. 8.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical Information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. 9.
    Cançado A, da Silva C, da Silva M (2014) A spatial scan statistic for zero-inflated poisson process. Environ Ecol Stat 21:627–650MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ferrándiz J, Abellán JJ, Gómez-Rubio V, López-Quílez A, Sanmartín P, Abellán C, Martínez-Beneito MA, Melchor I, Vanaclocha H, Zurriaga O, Ballester F, Gil JM, Pérez-Hoyos S, Ocaña R (2004) Spatial analysis of the relationship between cardiovascular mortality and drinking water hardness. Environ Health Perspect 112(9):1037–1044CrossRefGoogle Scholar
  11. 11.
    Ferreira J, Denison DGT, Holmes CC (2002) Partition modelling. In: Lawson AB, Denison DGT (eds) Spatial cluster modelling, Chap 7. Chapman & Hall/CRC, Boca Raton, pp 125–145Google Scholar
  12. 12.
    Gangnon RE (2006) Impact of prior choice on local bayes factors for cluster detection. Stat Med 25:883–895MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gangnon RE, Clayton MK (2000) Bayesian detection and modelling of spatial disease clustering. Biometrics 56:922–935CrossRefGoogle Scholar
  14. 14.
    Gangnon RE, Clayton MK (2003) A hierarchical model for spatially clustered disease rates. Stat Med 22:3213–3228CrossRefGoogle Scholar
  15. 15.
    Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, Boca Raton, FLzbMATHGoogle Scholar
  16. 16.
    Gómez-Rubio V, López-Quílez A (2010) Statistical methods for the geographical analysis of rare diseases. Adv Exp Med Biol 686:151–171CrossRefGoogle Scholar
  17. 17.
    Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206CrossRefGoogle Scholar
  18. 18.
    Gomez-Rubio V, Serrano PEM, Rowlingson B (2018) DClusterm: model-based detection of disease clusters. R package version 0.2Google Scholar
  19. 19.
    Jung I (2009) A generalized linear models approach to spatial scan statistics for covariate adjustment. Stat Med 28(7):1131–1143MathSciNetCrossRefGoogle Scholar
  20. 20.
    Knorr-Held L, Rasser G (2000) Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56:13–21CrossRefGoogle Scholar
  21. 21.
    Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kulldorff M (2006) Tests of spatial randomness adjusted for an inhomogeneity: a general framework. J Am Stat Assoc 101(475):1289–1305MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR (1998) Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377–1380CrossRefGoogle Scholar
  24. 24.
    Lawson A (ed) (2005). Statistical methods in medical research special issue on disease mapping, vol 14(1). SAGE Publications, Thousand OaksGoogle Scholar
  25. 25.
    Lawson AB, Gangnon RE, Wartenberg D (eds) (2006). Statistics in medicine. Special issue: developments in disease cluster detection, vol 25(5). Wiley, New YorkGoogle Scholar
  26. 26.
    Loh JM, Zhou Z (2007) Accounting for spatial correlation in the scan statistic. Ann Appl Stat 1:560–584MathSciNetCrossRefGoogle Scholar
  27. 27.
    McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  28. 28.
    McCullogh CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New YorkGoogle Scholar
  29. 29.
    Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A (General) 135(3):370–384CrossRefGoogle Scholar
  30. 30.
    Openshaw S, Charlton M, Wymer C, Craft AW (1987) A Mark I geographical analysis machine for the automated analysis of point datasets. Int J Geogr Inf Syst 1:335–358CrossRefGoogle Scholar
  31. 31.
    Prates MO, Kulldorff M, Assunção RM (2014) Relative risk estimates from spatial and space-time statistics: are they biased? Stat Med 33:2634–2644MathSciNetCrossRefGoogle Scholar
  32. 32.
    R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  33. 33.
    Rothman KJ (1990) A sobering start for the cluster busters’ conference. Am J Epidemiol Suppl. No. 1(132):S6–S13Google Scholar
  34. 34.
    Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximation (with discussion). J R Stat Soc Ser B 71(2):319–392MathSciNetCrossRefGoogle Scholar
  35. 35.
    Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4):583–616MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ugarte MD, Ibáñez B, Militino AF (2004) Testing for poisson zero inflation in disease mapping. Biom J 46(5):526–539MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ugarte MD, Ibáñez B, Militino AF (2006) Modelling risks in disease mapping. Stat Methods Med Res 15:21–35MathSciNetCrossRefGoogle Scholar
  38. 38.
    Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92(2):351–370MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wakefield J, Kim A (2013) A Bayesian model for cluster detection. Biostatistics 14:752–765CrossRefGoogle Scholar
  40. 40.
    Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk DA, Ginestet C, Arthur C-P, Fisher MC (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in iberia. Ecol Lett 13:372–382CrossRefGoogle Scholar
  41. 41.
    Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, Hoboken, NJCrossRefGoogle Scholar
  42. 42.
    Waller L, Turnbull B, Clark L, Nasca P (1992) Chronic disease surveillance and testing of clustering of disease and exposure: application to leukemia incidence in TCE-contaminated dumpsites in upstate New York. Environmetrics 3:281–300CrossRefGoogle Scholar
  43. 43.
    Zhang T, Lin G (2009) Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models. Biometrics 65:353–360MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zhang T, Lin G (2009) Spatial scan statistics in loglinear models. Comput Stat Data Anal 53:2851–2858MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhang Z, Assunção R, Kulldorff M (2010) Spatial scan statistics adjusted for multiple clusters. J Probab Stat 2010:1–11MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, School of Industrial EngineeringUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.College of Public Health and Human SciencesOregon State UniversityCorvallisUSA
  3. 3.Faculty of Health and MedicineLancaster UniversityLancasterUK

Personalised recommendations