Fast Bayesian Classification for Disease Mapping and the Detection of Disease Clusters
Conference paper
First Online:
- 1 Citations
- 17 Mentions
- 514 Downloads
Abstract
We propose a framework fast method for detecting clusters of disease based on generalized spatial scan statistics set in the context of Bayesian Hierarchical Models. The approach models spatio-temporal clusters of disease as dummy variables as part of a Generalized Linear Mixed Model.
Keywords
Spatial statistics Disease clusters Bayesian inference Integrated nested Laplace approximationReferences
- 1.Abrams AM, Kulldorff M, Kleinman K (2006). Empirical/asymptotic p-values for monte carlo-based hypothesis testing: an application to cluster detection using the scan statistic. Adv Dis Surveill 1(1):1Google Scholar
- 2.Ahrens C, Altman N, Casella G, Eaton M, Hwang JTG, Staudenmayer J, Stefanescu C (1999) Leukemia clusters in upstate New York: how adding covariates changes the story. Environmetrics 12(7):659–672CrossRefGoogle Scholar
- 3.Anderson C, Lee D, Dean N (2014) Identifying clusters in Bayesian disease mapping. Biostatistics 15(3):457–469CrossRefGoogle Scholar
- 4.Anderson C, Lee D, Dean N (2017) Spatial clustering of average risks and risk trends in Bayesian disease mapping. Biometrical J 59(1):41–56MathSciNetCrossRefGoogle Scholar
- 5.Besag J, York J, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43(1):1–59MathSciNetCrossRefGoogle Scholar
- 6.Bilancia M, Demarinis G (2014) Bayesian scanning of spatial disease rates with integrated nested laplace approximation (INLA). Stat Methods Appl 23(1):71–94MathSciNetCrossRefGoogle Scholar
- 7.Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Ser B 64(4):641–656MathSciNetCrossRefGoogle Scholar
- 8.Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical Information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
- 9.Cançado A, da Silva C, da Silva M (2014) A spatial scan statistic for zero-inflated poisson process. Environ Ecol Stat 21:627–650MathSciNetCrossRefGoogle Scholar
- 10.Ferrándiz J, Abellán JJ, Gómez-Rubio V, López-Quílez A, Sanmartín P, Abellán C, Martínez-Beneito MA, Melchor I, Vanaclocha H, Zurriaga O, Ballester F, Gil JM, Pérez-Hoyos S, Ocaña R (2004) Spatial analysis of the relationship between cardiovascular mortality and drinking water hardness. Environ Health Perspect 112(9):1037–1044CrossRefGoogle Scholar
- 11.Ferreira J, Denison DGT, Holmes CC (2002) Partition modelling. In: Lawson AB, Denison DGT (eds) Spatial cluster modelling, Chap 7. Chapman & Hall/CRC, Boca Raton, pp 125–145Google Scholar
- 12.Gangnon RE (2006) Impact of prior choice on local bayes factors for cluster detection. Stat Med 25:883–895MathSciNetCrossRefGoogle Scholar
- 13.Gangnon RE, Clayton MK (2000) Bayesian detection and modelling of spatial disease clustering. Biometrics 56:922–935CrossRefGoogle Scholar
- 14.Gangnon RE, Clayton MK (2003) A hierarchical model for spatially clustered disease rates. Stat Med 22:3213–3228CrossRefGoogle Scholar
- 15.Gilks W, Richardson S, Spiegelhalter D (1996) Markov chain Monte Carlo in practice. Chapman & Hall, Boca Raton, FLzbMATHGoogle Scholar
- 16.Gómez-Rubio V, López-Quílez A (2010) Statistical methods for the geographical analysis of rare diseases. Adv Exp Med Biol 686:151–171CrossRefGoogle Scholar
- 17.Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206CrossRefGoogle Scholar
- 18.Gomez-Rubio V, Serrano PEM, Rowlingson B (2018) DClusterm: model-based detection of disease clusters. R package version 0.2Google Scholar
- 19.Jung I (2009) A generalized linear models approach to spatial scan statistics for covariate adjustment. Stat Med 28(7):1131–1143MathSciNetCrossRefGoogle Scholar
- 20.Knorr-Held L, Rasser G (2000) Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56:13–21CrossRefGoogle Scholar
- 21.Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496MathSciNetCrossRefGoogle Scholar
- 22.Kulldorff M (2006) Tests of spatial randomness adjusted for an inhomogeneity: a general framework. J Am Stat Assoc 101(475):1289–1305MathSciNetCrossRefGoogle Scholar
- 23.Kulldorff M, Athas WF, Feurer EJ, Miller BA, Key CR (1998) Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377–1380CrossRefGoogle Scholar
- 24.Lawson A (ed) (2005). Statistical methods in medical research special issue on disease mapping, vol 14(1). SAGE Publications, Thousand OaksGoogle Scholar
- 25.Lawson AB, Gangnon RE, Wartenberg D (eds) (2006). Statistics in medicine. Special issue: developments in disease cluster detection, vol 25(5). Wiley, New YorkGoogle Scholar
- 26.Loh JM, Zhou Z (2007) Accounting for spatial correlation in the scan statistic. Ann Appl Stat 1:560–584MathSciNetCrossRefGoogle Scholar
- 27.McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
- 28.McCullogh CE, Searle SR (2001) Generalized, linear, and mixed models. Wiley, New YorkGoogle Scholar
- 29.Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A (General) 135(3):370–384CrossRefGoogle Scholar
- 30.Openshaw S, Charlton M, Wymer C, Craft AW (1987) A Mark I geographical analysis machine for the automated analysis of point datasets. Int J Geogr Inf Syst 1:335–358CrossRefGoogle Scholar
- 31.Prates MO, Kulldorff M, Assunção RM (2014) Relative risk estimates from spatial and space-time statistics: are they biased? Stat Med 33:2634–2644MathSciNetCrossRefGoogle Scholar
- 32.R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
- 33.Rothman KJ (1990) A sobering start for the cluster busters’ conference. Am J Epidemiol Suppl. No. 1(132):S6–S13Google Scholar
- 34.Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent gaussian models by using integrated nested laplace approximation (with discussion). J R Stat Soc Ser B 71(2):319–392MathSciNetCrossRefGoogle Scholar
- 35.Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4):583–616MathSciNetCrossRefGoogle Scholar
- 36.Ugarte MD, Ibáñez B, Militino AF (2004) Testing for poisson zero inflation in disease mapping. Biom J 46(5):526–539MathSciNetCrossRefGoogle Scholar
- 37.Ugarte MD, Ibáñez B, Militino AF (2006) Modelling risks in disease mapping. Stat Methods Med Res 15:21–35MathSciNetCrossRefGoogle Scholar
- 38.Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92(2):351–370MathSciNetCrossRefGoogle Scholar
- 39.Wakefield J, Kim A (2013) A Bayesian model for cluster detection. Biostatistics 14:752–765CrossRefGoogle Scholar
- 40.Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk DA, Ginestet C, Arthur C-P, Fisher MC (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in iberia. Ecol Lett 13:372–382CrossRefGoogle Scholar
- 41.Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, Hoboken, NJCrossRefGoogle Scholar
- 42.Waller L, Turnbull B, Clark L, Nasca P (1992) Chronic disease surveillance and testing of clustering of disease and exposure: application to leukemia incidence in TCE-contaminated dumpsites in upstate New York. Environmetrics 3:281–300CrossRefGoogle Scholar
- 43.Zhang T, Lin G (2009) Cluster detection based on spatial associations and iterated residuals in generalized linear mixed models. Biometrics 65:353–360MathSciNetCrossRefGoogle Scholar
- 44.Zhang T, Lin G (2009) Spatial scan statistics in loglinear models. Comput Stat Data Anal 53:2851–2858MathSciNetCrossRefGoogle Scholar
- 45.Zhang Z, Assunção R, Kulldorff M (2010) Spatial scan statistics adjusted for multiple clusters. J Probab Stat 2010:1–11MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2018