Mineralogical and Sulfur Isotopes in Ghar Roubane Barite Lead–Zinc Deposit, (Western Algeria)

  • Nacera Hadj MohamedEmail author
  • Abdelhak Boutaleb
  • Maria Boni
  • Djamel Eddine Aissa
Part of the Advances in Science, Technology & Innovation book series (ASTI)


The Ghar Roubane barite lead–zinc deposit lies in the metallogenic province of Western Algeria. This mineralization site occurs in the form of barite veins, taking place within the Paleozoic schists and granites and fracture-filling in Liassic limestones. The Paleozoic basement shows barite veins of several hundred meters in length, orientated from N50° to N75°, and dip mainly between 60° and 90°, with a thickness range comprised between 0.1 and 2 m. Barite pink, white to transparent in color. The barite veins are hosted in Liassic limestones with rare sulphides, related to fractures of NS and EW directions. The thermometric investigations performed on barite extracts from the granites indicate that homogenization temperatures (Th) for primary fluid inclusions appear to range from 130 to 140 °C. As for the barite extracts from schists and limestones, they display Th ranges ranging between 110 and 120 °C. Mean salinities are 15% equivalent NaCl for fluid inclusions in granite based barite, and 21% equivalent NaCl regarding the cover based barite. The interpretation of these data with respect to their relating geologic context favors a mixing process between basinal (prevailing) and basement fluids. The δ34S values relevant to the barite minerals prove to reveal a noticeable variation ranging from 21.3 to 29.4‰. The sulfur isotopic compositions suggest that the ore-based formations turn out to be derived from different sources that may well include seawater along with magmatic fluid mixtures.


Barite veins Pb–Zn mineralization Fluid inclusions Sulfur isotopes 


  1. 1.
    Chi, G., Ni, P.: Equation for calculation of NaCl/(NaCl+CaCl2) ratios and salinities from hydrohalite-melting and ice-melting temperatures in the H2O-NaCl-CaCl2 system. Acta Petrologica Sinica 23, 33–37 (2007)Google Scholar
  2. 2.
    Crawford, M.L.: Phase equilibria in aqueous fluid inclusions. In: Hollister, L.S., Crawford, M.L. (eds) Short Course in Fluid Inclusions: Applications to Petrology. Mineral. Assoc. Canada, vol. 6, pp. 75–100 (1981)Google Scholar
  3. 3.
    Elmi, S.: La sédimentation carbonatée en bordure du horst de Rhar Roubane (Algérie occidentale) pendant le Carixien. Bulletin de la Société Géologique de France 2, 355–365 (1977)Google Scholar
  4. 4.
    Elmi, S.: L’évolution des monts de Rhar Roubane (Algérie occidentale) au début du Jurassique. Livre Jubilaire Gabriel Lucas. Mémoire de l’Université de Dijon 7, 401–412 (1983)Google Scholar
  5. 5.
    Elmi, S.: L’histoire des monts de Rhar Roubane (Algérie occidentale) ou l’œuvre de Gabriel Lucas à l’épreuve du temps. Mémoires de la Société Géologique de France 169, 17–24 (1996)Google Scholar
  6. 6.
    Lucas, G.: Bordure des Hautes Plaines dans l’Algérie occidentale. XIXème Congrès géologique international, Alger. Monographies régionales d’Algérie (1) 21, 1–139 (1952)Google Scholar
  7. 7.
    Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F., Saltus, R.W.: A deposit model for Mississipi Valley-Type lead-zinc ores, chap. A of Mineral deposit models for resource assessment: U.S. geological survey scientific investigations report, pp. 5070–5213 (2010)Google Scholar
  8. 8.
    Shepherd, T.J., Rankin, A.H., Alderton, D.H.: A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow (London), p. 239 (1985)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nacera Hadj Mohamed
    • 1
    Email author
  • Abdelhak Boutaleb
    • 1
  • Maria Boni
    • 2
  • Djamel Eddine Aissa
    • 1
  1. 1.Metallogeny and Magmatism Laboratory of AlgeriaFSTGAT - USTHBBab EzzouarAlgeria
  2. 2.Department of Earth Sciences, Environment and ResourcesUniversity of NaplesNaplesItaly

Personalised recommendations