Stable Isotope Geochemistry of the Pleistocene Lacustrine-Palustrine Carbonates (Borj Edouane Unit, NW Tunisia)

  • Naoufel GhannemEmail author
  • Clemente Recio
  • Ildefonso Armenteros
  • Kamel Regaya
Part of the Advances in Science, Technology & Innovation book series (ASTI)


The Pleistocene carbonates of the Borj Edouane unit are made up of two principal facies associations: (1) calcrete-palustrine-laminar crust and (2) microbialites. The former represents the deposition in shallow lakes, as subjected to periodic exposure, while the second represents a steadier lacustrine environment. The isotopic analyses show singular high δ13C values (up to 11.7‰) with respect to both associations, while most δ18O values are constrained within the range comprised between −4.5 and −6.5‰. High δ13C values are mainly affected by the predominance of carbon emanating from the dissolution of the underlying and surrounding Cretaceous rocks. Additional influences of photosynthetic activity of plant, especially associated with the microbialite association, and evaporation degassing could increase the heavier carbon isotope. The δ18O related values prove to reflect a strong meteoric imprint.


Isotopes Microbialites Palustrine Calcrete Pleistocene 


  1. 1.
    Leng, M.J., Marshall, J.: Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci. Rev. 23(7–8), 811–831 (2004)Google Scholar
  2. 2.
    Utrilla, R., Vázquez, A., Anadón, P.: Paleohydrology of the Upper Miocene Bicorb Lake (eastern Spain) as inferred from stable isotopic data from inorganic carbonates. Sed. Geol. 121(3–4), 191–206 (1998)CrossRefGoogle Scholar
  3. 3.
    Talbot, M.R., Kelts, K.: Paleolimnological Signatures from Carbon and Oxygen Isotopic Ratios in Carbonates, from Organic Carbon-Rich Lacustrine Sediments: Chapter 6. In: Katz, B.J., Rosendahl, B.R. (eds.), Lacustrine Exploration: Case Studies And Modern Analogues. Mem. Am. Ass. petrol. Geol, 50, 99–112 (1991)Google Scholar
  4. 4.
    Andrews, J.E.: Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth Sci. Rev. 75(1–4), 85–104 (2006)CrossRefGoogle Scholar
  5. 5.
    Ben Haj Ali, M., Jédoui, Y., Dali, T., Bensalem, H., Memmi, L.: Cartegéologique de la Tunisieau 1/500 000. Service des Mines, de l’industrie et de l’Energie, Tunis, Tunisie (1985)Google Scholar
  6. 6.
    Craig, H.: Isotopic standards for carbon and oxygen and correlation factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta. 12, 133–149 (1957)CrossRefGoogle Scholar
  7. 7.
    Ghannem, N., Armenteros, I., Riahi, C., Regaya, K.: The lacustrine carbonate in the El Gara basin (Mid-Late Pleistocene, NW Tunisia). Sociedad Geologica de España, Geo-Temas 16(2), 621–624 (2016)Google Scholar
  8. 8.
    Elkhazri, A., Abdallah, H., Razgallah, S., Moullade, M., Kuhnt, W.: Carbon-isotope and microfaunal stratigraphy bounding the Lower Aptian Oceanic Anoxic Event in northeasternTunisia. Cretac. Res. 39, 133–148 (2013)CrossRefGoogle Scholar
  9. 9.
    Ayadi, Y., Mokadem, N., Besser, H., Khelifi, F., Harabi, S., Hamad, A., Hamed, Y.: Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern Mediterranean basin (Teboursouk area, NW Tunisia). J. Afr. Earth Sc. 137, 208–217 (2018)CrossRefGoogle Scholar
  10. 10.
    Casanova, J., Hillaire-Marcel, C.: Late Holocenehydrologicalhistoryof Lake Tanganyika, East Africa, fromisotopic data onfossilstromatolites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 91(1–2), 35–48 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Naoufel Ghannem
    • 1
    Email author
  • Clemente Recio
    • 2
  • Ildefonso Armenteros
    • 2
  • Kamel Regaya
    • 1
  1. 1.Faculty of Science of BizerteUniversity of CarthageZarzounaTunisia
  2. 2.Salamanca UniversitySalamancaSpain

Personalised recommendations