Advertisement

Study of the Compositional, Mechanical and Magnetic Properties of Saudi Meteorite

  • Muhammad AtifEmail author
  • Saqib Anwar
  • W. A. Farooq
  • M. Ali
  • V. Masilaimani
  • M. S. AlSalhi
  • Bassam A. Abuamarah
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

In the current study, the experimental results of the investigation on the compositional, mechanical and magnetic properties of Saudi meteorite were presented. Meteorite specimen was examined using techniques like scanning electron microscopy, EDAX, Backscattered electron imaging, XRD, hardness testing (Rockwell, Vicker, Brinell) and magnetic properties measurements. The composition analysis results of the meteorite reveal that it is essentially composed of an iron-Ni alloy with iron playing a dominant role. The hardness testing shows that the meteorite is formed of soft material with a Rockwell hardness of 22.5 HRC. Furthermore the magnetic measurement also supports the fact that the meteorite specimen is a soft ferromagnetic material. The saturation magnetization (Ms) of 0.701 emu/g was found for the saturation field of (Hs) = 5025 Oe. No trace of radioactivity is revealed when using a sensitive GM counter.

Keywords

EDAX Backscattered electron imaging XRD Hardness testing (Rockwell, Vicker, Brinell) Magnetic properties measurements 

Notes

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

References

  1. 1.
    Corrigan, C.M., Chabot, N.L., McCoy, T.J., McDonough, W.F., Watson, H.C., Saslow, S.A., Ash, R.D.: The iron–nickel–phosphorus system: effects on the distribution of trace elements during the evolution of iron meteorites. Geochim. Cosmochim. Acta 73, 2674–2691 (2009)CrossRefGoogle Scholar
  2. 2.
    Garcia-Guinea, J., Tormo, L., Ordoñez, A.R., Garcia-Moreno, O.: Non-destructive analyses on a meteorite fragment that fell in the Madrid city centre in 1896. Talanta. 114, 152–159 (2013)CrossRefGoogle Scholar
  3. 3.
    Goldstein, J.I., Scott, E.R.D., Chabot, N.L.: Iron meteorites: crystallization, thermal history, parent bodies, and origin. Chem. Erde. 69, 293–325 (2009)CrossRefGoogle Scholar
  4. 4.
    Hafner, S., Kalvius, M.: The Mössbauer resonance of Fe57 in troilite (FeS) and pyrrhotite (Fe0.88S). Z. Kristal. 123, 443–458 (1966)Google Scholar
  5. 5.
    Kruse, O., Ericsson, T.: A Mössbauer investigation of natural troilite from the Agpalilik meteorite. Phys. Chem. Miner. 15, 509–513 (1988)CrossRefGoogle Scholar
  6. 6.
    Nagata, T.: Meteorite magnetism and the early solar system magnetic fields. Phys. Earth Planet. Inter. 20, 324–341 (1979)CrossRefGoogle Scholar
  7. 7.
    Sugiura, N., Strangway, D.W.: Magnetic studies of meteorites. In: Kerridge, J.F., Matthews, M.S. (eds.) Meteorites and the Early solar system, pp. 595–615. University of Arizona Press, Tucson, USA, 1269 pp (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Atif
    • 1
    • 2
    Email author
  • Saqib Anwar
    • 3
  • W. A. Farooq
    • 1
  • M. Ali
    • 4
  • V. Masilaimani
    • 1
    • 2
  • M. S. AlSalhi
    • 1
    • 2
  • Bassam A. Abuamarah
    • 5
  1. 1.Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Research Chair for Laser Diagnosis of CancerKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Industrial Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  4. 4.King Abdullah Institute of Nanotechnology (Kain), King Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Geology and Geophysics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations