Advertisement

Warm Season Trends of ETa: A Case Study of Near-North Caspian Low Lands

  • Olga Ermolaeva
  • Anatoly ZeyligerEmail author
  • Eugene Muzilev
  • Zoya Startseva
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Actual evapotranspiration (ETa) has a very important significance for hydrological and environmental purposes balance in arid and semi-arid areas. MOD16 product was applied to estimate seasonal ETa trends for 2000–2009 time period, in the Pallasovsky District of Volgograd Region, South-East of the European part of Russia. The result of time series computing by Mann-Kendall test code indicated that ETa in this study region decreased during the analyzed period. The speed value of this process gradually varies from 4.7 mm/year in the southern part with about 240 mm of annual average ETa to 17.3 mm/year in the northern part with about 375 mm of annual average ETa. Analysis of the seasonal spatial distribution of ETa trend over the study region shows that it is influenced by changes of precipitation during warm seasons, and as a consequence, by land cover degradation due to farming system changes.

Keywords

Pre-North Caspian region Evapotranspiration Time series Mann-Kendall test Trend analysis Spatial distribution 

Notes

Acknowledgements

Authors express their gratitude to the Russian Foundation for Basic Research for providing financial support to the project 16-05-01097.

References

  1. 1.
    Zhang, H., Sun, J., Xiong, J.: Spatial-temporal patterns and controls of evapotranspiration across the Tibetan Plateau (2000–2012). Adv. Meteorol. 12 (2017). Article ID 7082606Google Scholar
  2. 2.
    Yang, Y., Yang, Y., Liu, D., Nordblom, T., Wu, B., Yan, N.: Regional water balance based on remotely sensed evapotranspiration and irrigation: an assessment of the Haihe Plain, China. Remote Sens. 6, 2514–2533 (2014)CrossRefGoogle Scholar
  3. 3.
    Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., Liu, J.: Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2000. JAWRA J. Am. Water Resour. Assoc. 44, 1193–1207 (2008)CrossRefGoogle Scholar
  4. 4.
    Argaman, E., Keesstra, S., Zeiliguer, A.: Monitoring the impact of surface albedo on a saline lake in SW Russia. Land Degrad. Dev. 23, 398–408 (2012)CrossRefGoogle Scholar
  5. 5.
    Su, Z.: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85–100 (2002)CrossRefGoogle Scholar
  6. 6.
    Jin, X., Guo, R., Xia, W.: Distribution of actual evapotranspiration over Qaidam Basin, an arid area in China. Remote Sens. 5, 6976–6996 (2013)CrossRefGoogle Scholar
  7. 7.
    Zeiliguer, A., Ermolaeva, O., Krichevtsova, A.: The results of the spatial-temporal analysis of remote sensing data sets by evaporation from the Earth’s land surface MOD16 ET for 2000–2009 for the territory Pallasovsky district of the Volgograd region of the Russian Federation. In: International Proceedings on Ekologiya. Ekonomika. Informatika, vol. 3, pp. 35–48. Izdatelstvo Yuzhnogo Federal’nogo Universiteta, Postov-na-Donu (2015)Google Scholar
  8. 8.
    Tüshaus, J., Dubovyk, O., Khamzina, A., Menz, G.: Comparison of medium spatial resolution ENVISAT-MERIS and Terra-MODIS time series for vegetation decline analysis: a case study in Central Asia. Remote Sens. 6, 5238–5256 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olga Ermolaeva
    • 1
  • Anatoly Zeyliger
    • 1
    Email author
  • Eugene Muzilev
    • 2
  • Zoya Startseva
    • 2
  1. 1.Russian State Agrarian University MTAAMoscowRussia
  2. 2.Water Problem Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations