Derivatives of 2,5-Diaryl-1,3-Oxazole and 2,5-Diaryl-1,3,4-Oxadiazole as Environment-Sensitive Fluorescent Probes for Studies of Biological Membranes

  • Yevgen O. Posokhov
  • Alexander Kyrychenko
  • Yevgen Korniyenko
Part of the Reviews in Fluorescence book series (RFLU)


In this review, we present the progress in design and applications of fluorescent membrane probes, based on derivatives of diaryloxazole and diaryloxadiazole. We illustrate the use of the mentioned fluorescent probes for the spectroscopic visualization of pathological changes in human platelet membranes during atherosclerosis and in membranes of intestinal enterocytes of rats in the course of chronic carrageenan-induced gastroenterocolitis. Also, the use of the fluorescent probes for monitoring of the changes in physico-chemical properties of biological membranes under the action of volatile organic solvents, low molecular weight cryoprotectants and weak constant magnetic field is discussed.


Fluorescence spectroscopy Fluorescent probe Spectroscopic visualization Atherosclerosis Human platelets Gastroenterocolitis Enterocyte Biological membrane Lipid bilayer 



We are grateful to Prof. A.O. Doroshenko for gifting us with supplies of derivatives of diaryloxazole and diaryloxadiazole; to M.D. I.V. Reminyak for valuable comments and for supplying us with the samples of blood platelets from the patients and from healthy volunteers; to M.D. A.S. Tkachenko for valuable comments and for supplying us with the samples of intestinal enterocytes of rats; and also to Dr. D.A. Bevziuk for supplying us with the samples of the cells of olfactory analyzer of rats and for valuable comments.


  1. 1.
    Weber G (1972) Uses of fluorescence in biophysics: some recent developments. Annu Rev Biophys Bioeng 1:553–570PubMedGoogle Scholar
  2. 2.
    Yguerabide J, Foster MC (1981) Fluorescence spectroscopy of biological membranes. In: Grell E (ed) Membrane spectroscopy, Molecular biology biochemistry and biophysics, vol 31. Springer, Berlin/Heidelberg, pp 199–269Google Scholar
  3. 3.
    Kyrychenko A (2015) Using fluorescence for studies of biological membranes: a review. Methods Appl Fluoresc 3:042003PubMedGoogle Scholar
  4. 4.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkGoogle Scholar
  5. 5.
    Demchenko AP (2009) Introduction to fluorescence sensing. Springer, DordrechtGoogle Scholar
  6. 6.
    Demchenko AP, Mély Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470PubMedPubMedCentralGoogle Scholar
  7. 7.
    Vladimirov YA, Dobretsov GE (1980) Fluorescence probe in study of biological membranes. Nauka, MoscowGoogle Scholar
  8. 8.
    Dobretsov GE (1989) Fluorescence probes in cell, membrane and lipoprotein investigations. Nauka, MoscowGoogle Scholar
  9. 9.
    Valeur B (2003) Fluorescent probes for evaluation of local physical and structural parameters. In: Schulman SG (ed) Molecular luminescence spectroscopy, Methods and applications: Part 3. Wiley, New York, pp 25–84Google Scholar
  10. 10.
    Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet J-M, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129:2187–2193PubMedGoogle Scholar
  11. 11.
    Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028PubMedGoogle Scholar
  12. 12.
    Klymchenko AS, Duportail G, Mély Y, Demchenko AP (2003) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100:11219–11224PubMedGoogle Scholar
  13. 13.
    Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mély Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochem Biophys Acta 1712:128–136PubMedGoogle Scholar
  14. 14.
    Klymchenko AS, Stoeckel H, Takeda K, Mély Y (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110:13624–13632PubMedGoogle Scholar
  15. 15.
    Klymchenko AS, Mély Y, Demchenko AP, Duportail G (2004) Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. Biochim Biophys Acta 1665:6–19PubMedGoogle Scholar
  16. 16.
    M’Baye G, Mély Y, Duportail G, Klymchenko AS (2008) Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys J 95:1217–1225PubMedPubMedCentralGoogle Scholar
  17. 17.
    Darwich Z, Klymchenko AS, Kucherak OA, Richert L, Mély Y (2012) Detection of apoptosis through the lipid order of the outer plasma membrane leaflet. Biochim Biophys Acta 1818:3048–3054PubMedGoogle Scholar
  18. 18.
    Posokhov YO (2012) Set of fluorescent probes for determination of physical-chemical properties of lipid membranes. UA Patent U201112552, 10. 04. 2012Google Scholar
  19. 19.
    Rekker RF, de Kort HM (1979) The hydrophobic fragmental constant. An extension to a 1000 data point set. Eur J Med Chem, Chimica Therapeutica 14:479–488Google Scholar
  20. 20.
    Mayer JM, van der Waterbeemd H, Testa B (1982) A comparison between the hydrophobic fragmental methods of rekker and leo. Eur J Med Chem., Chimica Therapeutica 17:17–25Google Scholar
  21. 21.
    Eugene Kellogg G, Abraham DJ (2000) Hydrophobicity: is logpo/w more than the sum of its parts? Eur J Med Chem 35:651–661PubMedGoogle Scholar
  22. 22.
    Posokhov EA, Abmanova NA, Boyko TP, Doroshenko AO (1999) Ortho-hydroxy derivatives of 2,5-diphenyl-1,3-oxazole and 2,5-diphenyl-1,3,4-oxadiazole as fluorescent probes for medical and biological research. Kharkov Univ Bull Chem Ser 454:188–190Google Scholar
  23. 23.
    Posokhov EA, Boyko TP, Bevziuk DA (2001) Ortho-hydroxy derivatives of 2,5-diphenyl-1,3-oxazole and 2,5-diphenyl-1,3,4-oxadiazole as fluorescent probes for toxicological investigations of model biomembranes. Kharkov Univ Bull Chem Ser 532:192–194Google Scholar
  24. 24.
    Posokhov YO (2011) Ortho-hydroxy derivatives of 2,5-diaryl-1,3-оxazole and 2,5-diaryl-1,3,4-оxadiazole as fluorescent probes for toxicological study of the cells of olfactory analyzer of rats. Kharkov Univ Bull Chem Ser 976:92–99Google Scholar
  25. 25.
    Posokhov YO (2012) 2-Phenyl-phenantr[9,10]oxazole and 2-(2′-OH-phenyl)-5–phenyl-1,3,4–oxadiazole as fluorescent probes to study the changes in platelet membranes accompanied the atherosclerosis. Kharkov Univ Bull Chem Ser 21:9–18Google Scholar
  26. 26.
    Posokhov Y (2016) Fluorescent probes sensitive to changes in the cholesterol-to-phospholipids molar ratio in human platelet membranes during atherosclerosis. Methods App Fluoresc 4:034013Google Scholar
  27. 27.
    Dewar MJS, Zoebisch EG, Healy EF, Steward JJP (1985) Development and use of quantum mechanical molecular models. 76. Am1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909Google Scholar
  28. 28.
    Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM, Skripkina VT, Shershukov VM (2002) Radiationless deactivation of the excited phototautomer form and molecular structure of esipt-compounds. Photochem Photobiol Sci 1:92–99PubMedGoogle Scholar
  29. 29.
    Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM (2000) Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole. J Phys Org Chem 13:253–265Google Scholar
  30. 30.
    Doroshenko AO, Posokhov EA (1999) Proton phototransfer in a series of ortho-hydroxy derivatives of 2,5-diphenyl-1,3-оxazole and 2,5-diphenyl-1,3,4-оxadiazole in polystyrene film. Theor Exper Chem 35:334–337Google Scholar
  31. 31.
    Shapiro HM (1995) Practical flow cytometry. Wiley-Liss, New YorkGoogle Scholar
  32. 32.
    Bouchet AM, Frías MA, Lairion F, Martini F, Almaleck H, Gordillo G, Disalvo EA (2009) Structural and dynamical surface properties of phosphatidylethanolamine containing membranes. Biochim Biophys Acta 1788:918–925PubMedGoogle Scholar
  33. 33.
    Gabdoulline RR, Chong Z, Vanderkooi G (1996) Molecular origin of the internal dipole potential in lipid bilayers: role of the electrostatic potential of water. Chem Phys Lipids 84:139–146Google Scholar
  34. 34.
    Straume M, Litman BJ (1987) Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene anisotropy decay. Biochemistry 26:5113–5120PubMedGoogle Scholar
  35. 35.
    Ho C, Slater SJ, Stubbs CD (1995) Hydration and order in lipid bilayers. Biochemistry 34:6188–6195PubMedGoogle Scholar
  36. 36.
    White CJ (2011) Atherosclerotic peripheral arterial disease, Cecil medicine 24th. Elsevier, Philadelphia PA SaundersGoogle Scholar
  37. 37.
    Fayad ZA (2009) Cardiovascular molecular imaging. Arterioscler Thromb Vasc Biol 29:981PubMedPubMedCentralGoogle Scholar
  38. 38.
    Choudhury RP, Fisher EA (2009) Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. Arterioscler Thromb Vasc Biol 29:983PubMedPubMedCentralGoogle Scholar
  39. 39.
    Saraste A, Nekolla SG, Schwaiger M (2009) Cardiovascular molecular imaging: an overview. Cardiovasc Res 83:643–652PubMedGoogle Scholar
  40. 40.
    Desai MY, Schoenhagen P (2009) Emergence of targeted molecular imaging in atherosclerotic cardiovascular disease. Expert Rev Cardiovasc Ther 7:197–204PubMedGoogle Scholar
  41. 41.
    Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451:953–957PubMedGoogle Scholar
  42. 42.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJM (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992PubMedGoogle Scholar
  43. 43.
    Rudd JHF, Hyafil F, Fayad ZA (2009) Inflammation imaging in atherosclerosis. Arterioscler Thromb Vasc Biol 29:1009PubMedPubMedCentralGoogle Scholar
  44. 44.
    Laufer EM, Winkens MHM, Narula J, Hofstra L (2009) Molecular imaging of macrophage cell death for the assessment of plaque vulnerability. Arterioscler Thromb Vasc Biol 29:1031PubMedGoogle Scholar
  45. 45.
    Prati F, Di Vito L (2012) Imaging of intraplaque haemorrhage. J Cardiovasc Med 13:640Google Scholar
  46. 46.
    Jaffer FA, Calfon MA, Rosenthal A, Mallas G, Razansky RN, Mauskapf A, Weissleder R, Libby P, Ntziachristos V (2011) Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 57:2516–2526PubMedPubMedCentralGoogle Scholar
  47. 47.
    Leuschner F, Nahrendorf M (2011) Molecular imaging of coronary atherosclerosis and myocardial infarction. Circ Res 108:593PubMedPubMedCentralGoogle Scholar
  48. 48.
    Casciani E, De Vincentiis C, Colaiacomo MC, Gualdi GF (2013) Multi-modal imaging technologies in cardiovascular risk assessment. Ther Apher Dial 17:138–149PubMedGoogle Scholar
  49. 49.
    Kataoka Y, Uno K, Puri R, Nicholls SJ (2012) Current imaging modalities for atherosclerosis. Expert Rev Cardiovasc Ther 10:457–471PubMedGoogle Scholar
  50. 50.
    Kataoka Y, Nicholls SJ (2014) Imaging of atherosclerotic plaques in obesity: excessive fat accumulation, plaque progression and vulnerability. Expert Rev Cardiovasc Ther 12:1471–1489PubMedGoogle Scholar
  51. 51.
    Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M (2014) Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 6:239sr231Google Scholar
  52. 52.
    Quillard T, Libby P (2012) Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res 111:231PubMedPubMedCentralGoogle Scholar
  53. 53.
    Nahrendorf M, McCarthy JR, Libby P (2012) Over a hump for imaging atherosclerosis: nanobodies visualize vascular cell adhesion molecule-1 in inflamed plaque. Circ Res 110:902PubMedGoogle Scholar
  54. 54.
    Lee S, Lee MW, Cho HS, Song JW, Nam HS, Oh DJ, Park K, Oh W-Y, Yoo H, Kim JW (2014) Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence–emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels. Circ Cardiovasc Interv 7:560PubMedGoogle Scholar
  55. 55.
    Libby P (2015) How does lipid lowering prevent coronary events? New insights from human imaging trials. Eur Heart J 36:472–474PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gallino A, Stuber M, Crea F, Falk E, Corti R, Lekakis J, Schwitter J, Camici P, Gaemperli O, Di Valentino M, Prior J, Garcia-Garcia HM, Vlachopoulos C, Cosentino F, Windecker S, Pedrazzini G, Conti R, Mach F, De Caterina R, Libby P (2012) “In vivo” imaging of atherosclerosis. Atherosclerosis 224:25–36PubMedGoogle Scholar
  57. 57.
    Osborn EA, Jaffer FA (2013) Imaging atherosclerosis and risk of plaque rupture. Curr Atheroscler Rep 15:359PubMedGoogle Scholar
  58. 58.
    Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13:125–138PubMedGoogle Scholar
  59. 59.
    Jaffer FA, Libby P, Weissleder R (2009) Optical and multimodality molecular imaging. Arterioscler Thromb Vasc Biol 29:1017PubMedPubMedCentralGoogle Scholar
  60. 60.
    Libby P, DiCarli M, Weissleder R (2010) The vascular biology of atherosclerosis and imaging targets. J Nucl Med 51:33S–37SPubMedGoogle Scholar
  61. 61.
    Bakic M (2007) Pathogenetic aspects of atherosclerosis. Acta Med Medianae 46:25–29Google Scholar
  62. 62.
    Wanner C (2004) Lipids and atherosclerosis. In: Horl WH (ed) Replacement of renal function by dialysis. Kluwer, Dordrecht, pp 791–805Google Scholar
  63. 63.
    Reminyak IV, Boyko TP (1999) Change of lipid structure of thrombocyte membranes in patients with vascular pathology of hypertensive and atherosclerotic genesis. Ukr Visn Psyhoneurol 7:14–26Google Scholar
  64. 64.
    Shattil SJ, Cooper RA (1976) Membrane microviscosity and human platelet function. Biochemistry 15:4832–4837PubMedGoogle Scholar
  65. 65.
    Hochgraf E, Levy Y, Aviram M, Brook JG, Cogan U (1994) Lovastatin decreases plasma and platelet cholesterol levels and normalizes elevated platelet fluidity and aggregation in hypercholesterolemic patients. Metabolism 43:11–17PubMedGoogle Scholar
  66. 66.
    Vélez M, Pilar Lillo M, Ulises A˜a A, González-Rodríguez J (1995) Cholesterol effect on the physical state of lipid multibilayers from the platelet plasma membrane by time-resolved fluorescence. Biochim Biophys Acta 1235:343–350PubMedGoogle Scholar
  67. 67.
    Watala C, Pietrucha T, Gwozdzinski K, Kralisz U, Cierniewski CS (1993) Microenvironment changes in human blood platelet membranes associated with binding of tissue-type plasminogen activator. Eur J Biochem 215:867–871PubMedGoogle Scholar
  68. 68.
    Kitagawa S, Matsubayashi M, Kotani K, Usui K, Kametani F (1991) Asymmetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. J Membr Biol 119:221–227PubMedGoogle Scholar
  69. 69.
    Caimi G, Lo Presti R, Montana M, Canino B, Ventimigla G, Romano A, Catania A (1995) Membrane fluidity, membrane lipid pattern, and cytosolic ca2+ content in platelets from a group of type ii diabetic patients with macrovascular complications. Diabetes Care 18:60–63PubMedGoogle Scholar
  70. 70.
    Shrivastava S, Chattopadhyay A (2007) Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes. Biochem Biophys Res Commun 356:705–710PubMedGoogle Scholar
  71. 71.
    Smith JL (1908) On the simultaneous staining of neutral fat and fatty acid by oxazine dyes. J Pathol Bacteriol 12:1–4Google Scholar
  72. 72.
    Lison L (1935) Sur le mécanisme et la signification de la coloration des lipides parle bleu de nil. Bull Histol Appl 12:279–289Google Scholar
  73. 73.
    Menschik Z (1953) Nile blue histochemical method for phospholipids. Stain Technol 28:13–18PubMedGoogle Scholar
  74. 74.
    Vergara J, Bezanilla F, Salzberg BM (1978) Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions. J Gen Physiol 72:775PubMedGoogle Scholar
  75. 75.
    Mori Y, Takeshita H (2012) Reagent, reagent kit and analyzing method. USA Patent 8293536Google Scholar
  76. 76.
    Suzuki Y, Moriama K, Mori Y, Takeshita H (2009) Platelet measurement reagent, platelet measurement reagent kit, and platelet measurement method. USA Patent 9081021Google Scholar
  77. 77.
    Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, Cadoret J-P, Bougaran G (2015) The use of fluorescent nile red and bodipy for lipid measurement in microalgae. Biotechnol Biofuels 8:42PubMedPubMedCentralGoogle Scholar
  78. 78.
    Elle IC, Olsen LCB, Pultz D, Rødkær SV, Færgeman NJ (2010) Something worth dyeing for: molecular tools for the dissection of lipid metabolism in caenorhabditis elegans. FEBS Lett 584:2183–2193PubMedGoogle Scholar
  79. 79.
    Gocze PM, Freeman DA (1994) Factors underlying the variability of lipid droplet fluorescence in ma-10 leydig tumor cells. Cytometry 17:151–158PubMedGoogle Scholar
  80. 80.
    Listenberger LL, Brown DA (2001) Fluorescent detection of lipid droplets and associated proteins. In: Current protocols in cell biology. John Wiley & Sons, Inc., New York p Unit 24.22Google Scholar
  81. 81.
    Cooper MS, D’Amico LA, Henry CA (1998) Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol 59:179–204Google Scholar
  82. 82.
    De Gottardi A, Vinciguerra M, Sgroi A, Moukil M, Ravier-Dall’Antonia F, Pazienza V, Pugnale P, Foti M, Hadengue A (2007) Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Investig 87:792–806PubMedGoogle Scholar
  83. 83.
    Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201PubMedGoogle Scholar
  84. 84.
    Moirano AL (1977) Sulfated seaweed polysaccharides. In: Graham HD (ed) Food colloids. AVI Publishing Co., Westport, pp 347–381Google Scholar
  85. 85.
    McClements DJ (2005) Food emulsions: principles, practices, and techniques. CRC Press, London/New York/Washington, DCGoogle Scholar
  86. 86.
    Nantel F, Denis D, Gordon R, Northey A, Cirino M, Metters KM, Chan CC (1999) Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. British J Pharmacol 128:853–859Google Scholar
  87. 87.
    de Carvalho AMR, Rocha NFM, Vasconcelos LF, Rios ERV, Dias ML, Silva MIG, de França Fonteles MM, Filho JMB, Gutierrez SJC, de Sousa FCF (2013) Evaluation of the anti-inflammatory activity of riparin ii (o-methil-n-2-hidroxi-benzoyl tyramine) in animal models. Chem Biol Interact 205:165–172PubMedGoogle Scholar
  88. 88.
    Renard J-F, Lecomte F, Hubert P, de Leval X, Pirotte B (2014) N-(3-arylaminopyridin-4-yl)alkanesulfonamides as pyridine analogs of nimesulide: cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. Eur J Med Chem 74:12–22PubMedGoogle Scholar
  89. 89.
    Arun O, Canbay O, Celebi N, Sahin A, Konan A, Atilla P, Aypar U (2013) The analgesic efficacy of intra-articular acetaminophen in an experimental model of carrageenan-induced arthritis. Pain Res Manag 18:e63–e67PubMedPubMedCentralGoogle Scholar
  90. 90.
    Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. In: Winyard PG, Willoughby DA (eds) Inflammation protocols, Methods in molecular biology, vol 225. Humana Press, Totowa, pp 115–121Google Scholar
  91. 91.
    Kim KS, Kim M-H, Yeom M, Choi HM, Yang H-I, Yoo MC, Hahm D-H (2012) Arthritic disease is more severe in older rats in a kaolin/carrageenan-induced arthritis model. Rheumatol Int 32:3875–3879PubMedGoogle Scholar
  92. 92.
    Tobacman JK, Wallace RB, Zimmerman MB (2001) Consumption of carrageenan and other water-soluble polymers used as food additives and incidence of mammary carcinoma. Med Hypotheses 56:589–598PubMedGoogle Scholar
  93. 93.
    Pricolo VE, Madhere SM, Finkelstein SD, Reichner JS (1996) Effects of lambda-carrageenan induced experimental enterocolitis on splenocyte function and nitric oxide production. J Surg Res 66:6–11PubMedGoogle Scholar
  94. 94.
    Іvanenko TO, Korobchinsky VO, Gubіna-Vakulik GI, Gorbach TV, Kolosova NG (2012) Method of modelling of chronic gastroenterocolitis. UA Patent 201014510Google Scholar
  95. 95.
    Posokhov YO, Tkachenko AS, Korniyenko YM (2013) Influence of carrageenan (E 407) on the membrane of enterocytes investigated with fluorescent probes. Bull Biol Med 98:229–233Google Scholar
  96. 96.
    Disalvo EA, Lairion F, Martini F, Tymczyszyn E, Frías M, Almaleck H, Gordillo GJ (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670PubMedGoogle Scholar
  97. 97.
    Ho C, Stubbs CD (1992) Hydration at the membrane protein-lipid interface. Biophys J 63:897–902PubMedPubMedCentralGoogle Scholar
  98. 98.
    Drinberg SA, Itsko EF (1986) Oil solvents. Solvents for paints and varnishes: a reference book, 2nd edn. Chemistry, LondonGoogle Scholar
  99. 99.
    Binder H, Gawrisch K (2001) Effect of unsaturated lipid chains on dimensions, molecular order and hydration of membranes. J Phys Chem B 105:12378–12390Google Scholar
  100. 100.
    Gawrisch K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223PubMedPubMedCentralGoogle Scholar
  101. 101.
    Marsh D (2001) Polarity and permeation profiles in lipid membranes. Proc Natl Acad Sci USA 98:7777–7782PubMedGoogle Scholar
  102. 102.
    Posokhov YO, Kyrychenko A (2013) Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations. Comput Biol Chem 46:23–31PubMedGoogle Scholar
  103. 103.
    Jorgensen WL, Briggs JM, Contreras ML (1990) Relative partition coefficients for organic solutes from fluid simulations. J Phys Chem 94:1683–1686Google Scholar
  104. 104.
    Kyrychenko A, Wu F, Thummel RP, Waluk J, Ladokhin AS (2010) Partitioning and localization of environment-sensitive 2-(2′-pyridyl)- and 2-(2′-pyrimidyl)-indoles in lipid membranes: a joint refinement using fluorescence measurements and molecular dynamics simulations. J Phys Chem B 114:13574–13584PubMedPubMedCentralGoogle Scholar
  105. 105.
    Kyrychenko A, Sevriukov IY, Syzova ZA, Ladokhin AS, Doroshenko AO (2011) Partitioning of 2,6-bis(1h-benzimidazol-2-yl)pyridine fluorophore into a phospholipid bilayer: complementary use of fluorescence quenching studies and molecular dynamics simulations. Biophys Chem 154:8–17PubMedGoogle Scholar
  106. 106.
    Setiawan I, Blanchard GJ (2014) Ethanol-induced perturbations to planar lipid bilayer structures. J Phys Chem B 118:537–546PubMedGoogle Scholar
  107. 107.
    Pillman HA, Blanchard GJ (2010) Effects of ethanol on the organization of phosphocholine lipid bilayers. J Phys Chem 114:3840–3846Google Scholar
  108. 108.
    Dabkowska AP, Lawrence MJ, McLain SE, Lorenz CD (2013) On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide. Chem Phys 410:31–36Google Scholar
  109. 109.
    Dabkowska AP, Foglia F, Lawrence MJ, Lorenz CD, McLain SE (2011) On the solvation structure of dimethylsulfoxide/water around the phosphatidylcholine head group in solution. J Chem Phys 135 225105-225101-225115PubMedGoogle Scholar
  110. 110.
    Fuller BJ, Lane N, Benson EE (2004) Life in the frozen state. CRC Press, New YorkGoogle Scholar
  111. 111.
    Arakawa T, Carpenter JF, Kita YA, Crowe JH (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27:401–415Google Scholar
  112. 112.
    Giraud MN, Motta C, Boucher D, Grizard G (2000) Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod 15:2160–2164PubMedGoogle Scholar
  113. 113.
    Dyubko TS, Onishchenko EV, Pivovarenko VG (2006) Influence of freezing and low molecular weight cryoprotectants on microsomal membrane structure: a study by multiparametric fluorescent probe. J Fluoresc 16:817–823PubMedGoogle Scholar
  114. 114.
    Korniyenko YМ, Posokhov YO (2011) Localization of penetrating cryoprotectant dimethylsulfoxide in red cell membranes: a study by fluorescent probes. Kharkov Univ Bull Biol Ser 971:135–139Google Scholar
  115. 115.
    Korniyenko Y, Posokhov Y (2016) A set of fluorescent probes to study the influence of low molecular weight cryoprotectants on human erythrocyte membranes. Kharkov Univ Bull Biol Ser 26:5–11Google Scholar
  116. 116.
    Gordiyenko OI, Linnik TP, Gordiyenko EO (2004) Erythrocyte membrane permeability for a series of diols. Bioelectrochemistry 62:115–118PubMedGoogle Scholar
  117. 117.
    Davydova EV, Gordienko OI (2009) Temperature effect on erythrocyte membrane permeability for cryoprotectants with different hydrophobicities. Prob Cryobiol 19:261–272Google Scholar
  118. 118.
    Kovalenko GV, Kovalenko IF, Linnik TP (2009) The mechanism of dmso, glycerol and ethylene glycol transport across rat and rabbit erythrocyte membranes. J VN Karazin Kharkiv Natl Univ Ser Biol 878:109–116Google Scholar
  119. 119.
    Oldenhof H, Gojowsky M, Wang S, Henke S, Yu C, Rohn K, Wolkers WF, Sieme H (2013) Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biol Reprod 88 68, 61-11-68, 61-11Google Scholar
  120. 120.
    Markov MS (2009) What need to be known about the therapy with static magnetic fields. Environmentalist 29:169–176Google Scholar
  121. 121.
    Bianchi C, Meloni A (2007) Natural and man-made terrestrial electromagnetic noise: an outlook. Ann Geophys 50:435–445Google Scholar
  122. 122.
    Rosch PJ, Markov MS (2004) Bioelectromagnetic medicine. Marcel Dekker Inc, New YorkGoogle Scholar
  123. 123.
    Bassett CAL (1993) Beneficial effects of electromagnetic fields. J Cell Biochem 51:387–393PubMedGoogle Scholar
  124. 124.
    Durney CH, Christensen DA (2000) Basic introduction to bioelectromagnetics. CRC Press INC, Boca Raton/New York/Washington, DCGoogle Scholar
  125. 125.
    Vander Vorst A, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues. Wiley, New YorkGoogle Scholar
  126. 126.
    Michaelson SM (1980) Microwave biological effects: an overview. Proc IEEE 68:40–49Google Scholar
  127. 127.
    Alekseev SI, Ziskin MC (1995) Millimeter microwave effect on ion transport across lipid bilayer membranes. Bioelectromagnetics 16:124–131PubMedGoogle Scholar
  128. 128.
    Ovchinnikova GI, Korosteleva JF (1994) The mechanism of absorption of microwave radiation by biological membranes. Biofizika 39:485–489PubMedGoogle Scholar
  129. 129.
    Shckorbatov YG, Shakhbazov VG, Navrotskaya VV (2002) Electrokinetic properties of nuclei and membrane permeability in human buccal epithelium cells influenced by the low-level microwave radiation. Electrophoresis 23:2074–2079PubMedGoogle Scholar
  130. 130.
    Posokhov YO, Pasiuga VN, Kolchigin NN, Shckorbatov YG (2013) Method for the determination of magnetic or electromagnetic field effect on biological membranes. UA Patent U201204116Google Scholar
  131. 131.
    Posokhov YO, Pasiuga VN, Shckorbatov YG (2012) Assessment of effect of magnetic field on properties of membranes of human buccal epithelium cells: a study by fluorescent probes. Paper presented at the VIII International Science-Technical Conference “Modern trends in biological physics and chemistry BPPC-2012., Sevastopol, pp 64–66Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yevgen O. Posokhov
    • 1
  • Alexander Kyrychenko
    • 2
  • Yevgen Korniyenko
    • 3
  1. 1.Department of Organic Chemistry, Biochemistry and MicrobiologyThe National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine
  2. 2.Institute of Chemistry and School of ChemistryV. N. Karazin Kharkiv National UniversityKharkivUkraine
  3. 3.Department of Human and Animal PhysiologyV. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations