Advertisement

Solvent Effect on Dual Fluorescence and the Corresponding Excited State Dynamics

  • Debabrata GoswamiEmail author
  • Dipak Kumar Das
  • Krishnandu Makhal
Chapter
Part of the Reviews in Fluorescence book series (RFLU)

Abstract

Ultrafast depopulation dynamics of highly excited states of near-infrared (NIR) tri-carbocyanine dyes is presented in primary alcohols using the femtosecond fluorescence upconversion technique. Pronounced solvent dependence is observed in the dynamics of the highly excited states. Typically, the tri-carbocyanine dyes have strong absorption and fluorescence with a single peak in the NIR region, however, on tuning the excitation wavelength to the visible region, two distinct emission bands are seen with a large peak wavelength difference. Such dual fluorescent peaks correspond to the respective transitions: S2 → S0 for the visible region and S1 → S0 for the NIR region. The exact fluorescent band positions or their intensities strongly depend on the viscosity and polarity of the solvents. The fluorescence decay timescales measured using fluorescence upconversion techniques with femtosecond time resolution also vary significantly as a function of solvent polarity. The faster decay on the ~250 fs and slower decay on the order of picosecond timescale was found which are strongly depending with increasing the chain length of alcohol. Specifically, for example, in the IR144 dye, the faster decay time constant (τ1) increase with the increase in the viscosity and chain length of the alcohol while, in the case of the IR140 dye, we noticed that the τ1 value decreases with increasing viscosity and chain length of alcohols. We invoke the ion-pair formation of IR140 dye with alcohols to explain such behavior.

Keywords

Excited state photophysics Solvent effects Excited states Ultrafast dynamics Tri-carbocyanine dyes 

References

  1. 1.
    Konar A, Lozovoy VV, Dantus M (2012) Optical response of fluorescent molecules studied by synthetic femtosecond laser pulses. J Phys Chem Lett 3:2458CrossRefGoogle Scholar
  2. 2.
    Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64CrossRefGoogle Scholar
  3. 3.
    Matsumoto S, Kubodera K-I, Kurihara T, Kaino T (1990) Third-order nonlinear optical properties of cyanine dyes and polymer films containing these dyes. Opt Commun 76:147CrossRefGoogle Scholar
  4. 4.
    Sun R, Yan B-L, Ge J-F, Xu Q-F, Li N-J, Wu X-Z, Song Y-L, Lu J-M (2013) Third-order nonlinear optical properties of unsymmetric pentamethine cyanine dyes possessing benzoxazolyl and benzothiazolyl groups. Dyes Pigments 96:189CrossRefGoogle Scholar
  5. 5.
    Mustroph H, Stollenwerk M, Bressau V (2006) Current developments in optical data storage with organic dyes. Angew Chem Int Ed 45:2016CrossRefGoogle Scholar
  6. 6.
    Zheng Q, He GS, Prasad PN (2009) A novel near IR two-photon absorbing chromophore: optical limiting and stabilization performances at an optical communication wavelength. Chem Phys Lett 475:250CrossRefGoogle Scholar
  7. 7.
    Bazylińska U, Pietkiewicz J, Saczko J, Nattich-Rak M, Rossowska J, Garbiec A, Wilk KA (2012) Nanoemulsion-templated multilayer nanocapsules for cyanine-type photosensitizer delivery to human breast carcinoma cells. Eur J Pharm Sci 47:406CrossRefGoogle Scholar
  8. 8.
    Ehret A, Stuhl L, Spitler MT (2001) Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B 105:9960CrossRefGoogle Scholar
  9. 9.
    Zhan W-H, Wu W-J, Hua J-L, Jing Y-H, Meng F-S, Tian H (2007) Photovoltaic properties of new cyanine–naphthalimide dyads synthesized by ‘click’ chemistry. Tetrahedron Lett 48:2461CrossRefGoogle Scholar
  10. 10.
    Castro FA, Faes A, Geiger T, Graeff CFO, Nagel M, Nüesch F, Hany R (2006) On the use of cyanine dyes as low-bandgap materials in bulk heterojunction photovoltaic devices. Synth Met 156:973CrossRefGoogle Scholar
  11. 11.
    Yu A, Tolbert CA, Farrow DA, Jonas DM (2002) Solvatochromism and solvation dynamics of structurally related cyanine dyes. J Phys Chem A 106:9407CrossRefGoogle Scholar
  12. 12.
    Kamat NP, Liao Z, Moses LE, Rawson J, Therien MJ, Dmochowski IJ, Hammer DA (2011) Sensing membrane stress with near IR-emissive porphyrins. Proc Natl Acad Sci U S A 108:13984CrossRefGoogle Scholar
  13. 13.
    Siebert R, Winter A, Schubert US, Dietzek B, Popp J (2011) The molecular mechanism of dual emission in terpyridine transition metal complexes – ultrafast investigations of photoinduced dynamics. Phys Chem Chem Phys 13:1606CrossRefGoogle Scholar
  14. 14.
    Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14CrossRefGoogle Scholar
  15. 15.
    Itoh T (2012) Fluorescence and phosphorescence from higher excited states of organic molecules. Chem Rev 112:4541CrossRefGoogle Scholar
  16. 16.
    Lippert E, Lippert W, Moll F, Nagale W, Boos H, Prigge H, Blankenstein IS (1961) Umwandlung von Elektronenanregungsenergie. Angew Chem 73:695CrossRefGoogle Scholar
  17. 17.
    Yushchenko DA, Shvadchak VV, Klymchenko AS, Duportail G, Pivovarenko VG, Mély Y (2007) Modulation of excited-state intramolecular proton transfer by viscosity in protic media. J Phys Chem A 111:10435CrossRefGoogle Scholar
  18. 18.
    Yushchenko DA, Shvadchak VV, Klymchenko AS, Duportail G, Mély Y, Pivovarenko VG (2006) 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New J Chem 30:774CrossRefGoogle Scholar
  19. 19.
    Glazer EC, Magde D, Tor Y (2005) Dual emission from a family of conjugated dinuclear RuII complexes. J Am Chem Soc 127:4190CrossRefGoogle Scholar
  20. 20.
    Das DK, Makhal K, Singhal S, Goswami D (2013) Polarization induced control of multiple fluorescence from a molecule. Chem Phys Lett 579:45CrossRefGoogle Scholar
  21. 21.
    Lima C-K, Seo J, Kima S, Kwona IC, Ahnc C-H, Park SY (2011) Concentration and pH-modulated dual fluorescence in self-assembled nanoparticles of phototautomerizable biopolymeric amphiphile. Dyes Pigments 90:284CrossRefGoogle Scholar
  22. 22.
    Inoue Y, Jiang P, Tsukada E, Wada T, Shimizu H, Tai A, Ishikawa M (2002) Unique dual fluorescence of sterically congested hexaalkyl benzenehexacarboxylates: mechanism and application to viscosity probing. J Am Chem Soc 124:6942CrossRefGoogle Scholar
  23. 23.
    Bayliss NS, McRae EG (1954) Solvent effects in organic spectra: dipole forces and the Franck–Condon principle. J Phys Chem 58:1002CrossRefGoogle Scholar
  24. 24.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319CrossRefGoogle Scholar
  25. 25.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  26. 26.
    Nag A, Goswami D (2009) Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. J Photochem Photobiol A: Chem 206:188CrossRefGoogle Scholar
  27. 27.
    Mannekutla JR, Mulimani BG, Inamdar SR (2008) Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochim Acta A 69:419CrossRefGoogle Scholar
  28. 28.
    Champagne B, Guillaume M, Zutterman F (2006) TDDFT investigation of the optical properties of cyanine dyes. Chem Phys Lett 425:105CrossRefGoogle Scholar
  29. 29.
    Bertolino CA, Ferrari AM, Barolo C, Viscardi G, Caputo G, Coluccia S (2006) Solvent effect on indocyanine dyes: a computational approach. Chem Phys 330:52CrossRefGoogle Scholar
  30. 30.
    Fabian J (2010) TDDFT-calculations of Vis/NIR absorbing compounds. Dyes Pigments 84:36CrossRefGoogle Scholar
  31. 31.
    Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: determination of ground and excited state dipole moment. Spectrochim Acta A 65:673CrossRefGoogle Scholar
  32. 32.
    Kabatc J, Ośmiałowski B, Pączkowski J (2006) The experimental studies on the determination of the ground and excited state dipole moments of some hemicyanine dyes. Spectrochim Acta A 63:524CrossRefGoogle Scholar
  33. 33.
    Nagachandraa KH, Mannekutlab JR, Amarayyac SM, Inamdar SR (2012) Solvent effect on the spectral properties of dipolar laser dyes: evaluation of ground and excited state dipole moments. Eur J Chem 3:163CrossRefGoogle Scholar
  34. 34.
    Baraldi I, Brancolini G, Momicchioli F, Ponterini G, Vanossi D (2003) Solvent influence on absorption and fluorescence spectra of merocyanine dyes: a theoretical and experimental study. Chem Phys 288:309CrossRefGoogle Scholar
  35. 35.
    Liebig CM, Dennis WM (2006) Optical dephasing in saturable-absorbing organic dye IR140. Appl Opt 45:2072CrossRefGoogle Scholar
  36. 36.
    Gumy J-C, Nicolet O, Vauthey E (1999) Photochemical switching of vesicle formation using an azobenzene-modified surfactant. J Phys Chem A 103:10737CrossRefGoogle Scholar
  37. 37.
    Wang D, Jiang H, Yang H, Liu C, Gong Q, Xiang J, Xu G (2002) Investigation on photoexcited dynamics of IR-140 dye in ethanol by femtosecond supercontinuum-probing technique. J Opt A Pure Appl Opt 4:155CrossRefGoogle Scholar
  38. 38.
    Wang D, Jiang H, Wu S, Yang H, Gong Q, Xiang J, Xu G (2003) An investigation of solvent effects on the optical properties of dye IR-140 using the pump supercontinuum-probing technique. J Opt A Pure Appl Opt 5:515CrossRefGoogle Scholar
  39. 39.
    Carson EA, Diffey WM, Shelly KR, Pastirk SL, Dillman KL, Schleicher JM, Beck WF (2004) Dynamic-absorption spectral contours: vibrational phase-dependent resolution of low-frequency coherent wave-packet motion of IR144 on the ground-state and excited-state π → π* surfaces. J Phys Chem A 108:1489CrossRefGoogle Scholar
  40. 40.
    Joo T, Jia YW, Yu JY, Lang MJ, Fleming GR (1996) Third-order nonlinear time domain probes of solvation dynamics. J Chem Phys 104:6089CrossRefGoogle Scholar
  41. 41.
    Harel E, Fidler AF, Engel GS (2010) Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc Natl Acad Sci U S A 107:16444CrossRefGoogle Scholar
  42. 42.
    Rurack K, Spieles M (2011) Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600−1000 nm. Anal Chem 83:1232CrossRefGoogle Scholar
  43. 43.
    Sahyun MRV, Serpone N (1997) Photophysics of thiacarbocyanine dyes: relaxation dynamics in a homologous series of thiacarbocyanines. J Phys Chem A 101:9877CrossRefGoogle Scholar
  44. 44.
    Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145CrossRefGoogle Scholar
  45. 45.
    Guarin CA, Villabona-Monsalve JP, Lopez-Arteaga R, Peon J (2013) Dynamics of the higher lying excited states of cyanine dyes. An ultrafast fluorescence study. J Phys Chem B 117:7352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Debabrata Goswami
    • 1
    Email author
  • Dipak Kumar Das
    • 1
  • Krishnandu Makhal
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations