Fluorescent NLOphoric Coumarins: A Short Review

  • Yogesh Erande
  • Nagaiyan SekarEmail author
Part of the Reviews in Fluorescence book series (RFLU)


The differently substituted coumarins by synthetic modelling produce a variety of desired molecules with typical photophysical characteristics and nonlinearities. The nonlinear optical (NLO) properties and structural requirement to obtain the nonlinear optical responses in coumarins are discussed in details. Coumarin molecules with donor at 7-position and acceptor at 3-position show strong intramolecular charge transfer (ICT) character along this conjugated path, and such molecular arrangements with D-π-A system result into significant NLO response. This review covers the different types of fluorescent coumarins reported in the literature and comparative study of their NLO properties obtained by different experimental and theoretical methods. Various experimental methods such as EFISH (electric field-induced second harmonic), HRS (hyper-Rayleigh scattering), solvatochromism, solvent-sensitive emission and theoretical approach by DFT (density functional theory) computation are discussed to illustrate the nonlinear optical properties of coumarin chromophores. Bulk nonlinear optical properties of coumarins are investigated by EFISH and Z-scan techniques. Experimental and solvatochromic nonlinear optical properties of coumarins are compared with the theoretical values obtained from DFT calculations. OBO and OBN complex of coumarin chromophores with BF2 unit, azocoumarins, coumarin chalcones, biscoumarins and rigid coumarins studied for their promising NLO properties are covered in this review.


Coumarin Nonlinear optical DFT D-π-A Charge transfer Hyperpolarizability Solvatochromism Charge transfer Absorption 


  1. 1.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119CrossRefGoogle Scholar
  2. 2.
    Tathe AB, Sekar N (2016) Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt Mater (Amst) 51:121–127CrossRefGoogle Scholar
  3. 3.
    Sahraoui B, Kityk IV, Hudhomme P, Gorgues A (2001) Temperature−pressure anomalies of electrooptic coefficients in C60−TTF derivatives. J Phys Chem B 105:6295–6299CrossRefGoogle Scholar
  4. 4.
    El Ouazzani H, Iliopoulos K, Pranaitis M et al (2011) Second- and third-order nonlinearities of novel push−pull azobenzene polymers. J Phys Chem B 115:1944–1949CrossRefGoogle Scholar
  5. 5.
    Carlotti B, Elisei F, Spalletti A (2011) A peculiar dependence of intersystem crossing of p-nitro-2,5-distyrylfuran on the dielectric properties of the solvent. Phys Chem Chem Phys 13:20787–20793CrossRefGoogle Scholar
  6. 6.
    Kikaš I, Carlotti B, Škorić I et al (2012) Synthesis, spectral properties and photo behaviour of push–pull distyrylbenzene nitro-derivatives. J Photochem Photobiol A Chem 244:38–46CrossRefGoogle Scholar
  7. 7.
    Fortuna CG, Mazzucato U, Musumarra G et al (2010) Photochemistry and DNA-affinity of some stilbene and distyrylbenzene analogues containing pyridinium and imidazolium iodides. J Photochem Photobiol A Chem 216:66–72CrossRefGoogle Scholar
  8. 8.
    Baraldi I, Benassi E, Ciorba S et al (2009) Spectra and photophysics of new organic fluorophores: 2,3-Di(phenylethenyl)benzofuran derivatives. Chem Phys 361:61–67CrossRefGoogle Scholar
  9. 9.
    Pereverzev YV, Gunnerson KN, Prezhdo OV et al (2008) Guest−host cooperativity in organic materials greatly enhances the nonlinear optical response. J Phys Chem C 112:4355–4363CrossRefGoogle Scholar
  10. 10.
    Zhang C, Dalton LR, Oh M-C et al (2001) Low Vπ electrooptic modulators from CLD-1: chromophore design and synthesis, material processing, and characterization. Chem Mater 13:3043–3050CrossRefGoogle Scholar
  11. 11.
    Zyss J (1979) Hyperpolarizabilities of substituted conjugated molecules. III. Study of a family of donor–acceptor disubstituted phenyl-polyenes. J Chem Phys 71:909–916CrossRefGoogle Scholar
  12. 12.
    Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668CrossRefGoogle Scholar
  13. 13.
    Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446CrossRefGoogle Scholar
  14. 14.
    Zyss J (1979) Hyperpolarizabilities of substituted conjugated molecules. II. Substituent effects and respective σ–π contributions. J Chem Phys 70:3341–3349CrossRefGoogle Scholar
  15. 15.
    Griffiths J, Millar V, Bahra GS (1995) The influence of chain length and electron acceptor residues in 3-substituted 7-N,N-diethylaminocoumarin dyes. Dyes Pigments 28:327–339CrossRefGoogle Scholar
  16. 16.
    Tathe AB, Gupta VD, Sekar N (2015) Synthesis and combined experimental and computational investigations on spectroscopic and photophysical properties of red emitting 3-styryl coumarins. Dyes Pigments 119:49–55CrossRefGoogle Scholar
  17. 17.
    Huang S-T, Jian J-L, Peng H-Z et al (2010) The synthesis and optical characterization of novel iminocoumarin derivatives. Dyes Pigments 86:6–14CrossRefGoogle Scholar
  18. 18.
    Sun Y-F, Wang H-P, Chen Z-Y, Duan W-Z (2013) Solid-state fluorescence emission and second-order nonlinear optical properties of coumarin-based fluorophores. J Fluoresc 23:123–130CrossRefGoogle Scholar
  19. 19.
    Tathe AB, Sekar N (2016) Red-emitting NLOphoric carbazole-coumarin hybrids – synthesis, photophysical properties and DFT studies. Dyes Pigments 129:174–185CrossRefGoogle Scholar
  20. 20.
    Anand B, Roy N, Siva Sankara Sai S, Philip R (2013) Spectral dispersion of ultrafast optical limiting in Coumarin-120 by white-light continuum Z-scan. Appl Phys Lett 102:203302CrossRefGoogle Scholar
  21. 21.
    Lanke SK, Sekar N (2016) Coumarin push-pull NLOphores with red emission: solvatochromic and theoretical approach. J Fluoresc 26:949–962CrossRefGoogle Scholar
  22. 22.
    Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977–1979CrossRefGoogle Scholar
  23. 23.
    Singer KD, Lalama SL, Sohn JE, Small RD (1987) Nonlinear optical properties of organic molecules and crystals. Academic, OrlandoGoogle Scholar
  24. 24.
    Zyss J (1994) Molecular nonlinear optics: materials, physics, and devices. Academic, San DiegoGoogle Scholar
  25. 25.
    Zyss J (2016) Molecular nonlinear optics. Academic, New YorkGoogle Scholar
  26. 26.
    Moerner WE, Silence SM (1994) Polymeric photorefractive materials. Chem Rev 94:127–155CrossRefGoogle Scholar
  27. 27.
    Marder SR (2006) Organic nonlinear optical materials: where we have been and where we are going. Chem Commun:131–134Google Scholar
  28. 28.
    Albota M, Beljonne D, Brédas J-L et al (1998) Design of organic molecules with large two-photon absorption cross sections. Science (80- ) 281:1653 LP-1656CrossRefGoogle Scholar
  29. 29.
    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum Chem Asp Chem Rev 94:195–242CrossRefGoogle Scholar
  30. 30.
    Liu X, Cole JM, Waddell PG et al (2012) Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J Phys Chem A 116:727–737CrossRefGoogle Scholar
  31. 31.
    Moylan CR (1994) Molecular hyperpolarizabilities of coumarin dyes. J Phys Chem 98:13513–13516CrossRefGoogle Scholar
  32. 32.
    García S, Vázquez JL, Rentería M et al (2016) Synthesis and experimental-computational characterization of nonlinear optical properties of triazacyclopentafluorene-coumarin derivatives. Opt Mater (Amst) 62:231–239CrossRefGoogle Scholar
  33. 33.
    Turki H, Abid S, Fery-Forgues S, El Gharbi R (2007) Optical properties of new fluorescent iminocoumarins: part 1. Dyes Pigments 73:311–316CrossRefGoogle Scholar
  34. 34.
    Christie RM, Lui C-H (2000) Studies of fluorescent dyes: part 2. An investigation of the synthesis and electronic spectral properties of substituted 3-(2′-benzimidazolyl)coumarins. Dyes Pigments 47:79–89CrossRefGoogle Scholar
  35. 35.
    Syzova ZA, Doroshenko AO, Lukatskaya LL et al (2004) Bichromophoric fluorescent dyes with rigid molecular structure: fluorescence ability regulation by the photoinduced intramolecular electron transfer. J Photochem Photobiol A Chem 165:59–68CrossRefGoogle Scholar
  36. 36.
    Schill H, Nizamov S, Bottanelli F et al (2013) 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chem A Eur J 19:16556–16565CrossRefGoogle Scholar
  37. 37.
    Wagner DB (2009) The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14(1):210–237CrossRefGoogle Scholar
  38. 38.
    Cheng LT, Tam W, Stevenson SH et al (1991) Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem 95:10631–10643CrossRefGoogle Scholar
  39. 39.
    Momicchioli F, Ponterini G, Vanossi D (2008) First- and second-order polarizabilities of simple merocyanines. An experimental and theoretical reassessment of the two-level model. J Phys Chem A 112:11861–11872CrossRefGoogle Scholar
  40. 40.
    Paley MS, Harris JM (1991) Synthesis and characterization of some pyridinium N-phenoxide betaine dyes for second-harmonic generation. J Org Chem 56:568–574CrossRefGoogle Scholar
  41. 41.
    Leu WCW, Fritz AE, Digianantonio KM, Hartley CS (2012) Push–pull macrocycles: donor–acceptor compounds with paired linearly conjugated or cross-conjugated pathways. J Org Chem 77:2285–2298CrossRefGoogle Scholar
  42. 42.
    Carlotti B, Flamini R, Kikaš I et al (2012) Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem Phys 407:9–19CrossRefGoogle Scholar
  43. 43.
    Dirk CW, Cheng L-T, Kuzyk MG (1992) A simplified three-level model describing the molecular third-order nonlinear optical susceptibility. Int J Quantum Chem 43:27–36CrossRefGoogle Scholar
  44. 44.
    Isborn CM, Leclercq A, Vila FD et al (2007) Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. J Phys Chem A 111:1319–1327CrossRefGoogle Scholar
  45. 45.
    Albert IDL, Marks TJ, Ratner MA (1996) Rational design of molecules with large hyperpolarizabilities. Electric field, solvent polarity, and bond length alternation effects on merocyanine dye linear and nonlinear optical properties. J Phys Chem 100:9714–9725CrossRefGoogle Scholar
  46. 46.
    Capobianco A, Centore R, Noce C, Peluso A (2013) Molecular hyperpolarizabilities of push–pull chromophores: a comparison between theoretical and experimental results. Chem Phys 411:11–16CrossRefGoogle Scholar
  47. 47.
    Erande Y, Sreenath MC, Chitrambalam S et al (2017) Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes. Opt Mater (Amst) 66:494–511CrossRefGoogle Scholar
  48. 48.
    Tathe AB, Sekar N (2016) Red emitting coumarin—azo dyes : synthesis, characterization, linear and non-linear optical properties-experimental and computational approach. J Fluoresc 26:1279–1293CrossRefGoogle Scholar
  49. 49.
    Lanke SK, Sekar N (2015) Rigid coumarins: a complete DFT, TD-DFT and non linear optical property study. J Fluoresc 25:1469–1480CrossRefGoogle Scholar
  50. 50.
    Prasad MVS, Chaitanya K, UdayaSri N, Veeraiah V (2013) Experimental and theoretical (HOMO, LUMO, NBO analysis and NLO properties) study of 7-hydroxy-4-phenylcoumarin and 5,7-dihydroxy-4-phenylcoumarin. J Mol Struct 1047:216–228CrossRefGoogle Scholar
  51. 51.
    Sankar A, Peramaiyan G, Ambalatharasu S et al (2016) Bulk growth, thermal, linear and nonlinear optical studies of 2-carboxylatopyridinium p-nitrophenol crystal. J Opt 45:175–179CrossRefGoogle Scholar
  52. 52.
    Tambe SM, Tasaganva RG, Jogul JJ et al (2009) Development of polyurethanes with azo-type chromophores for second-order nonlinear optical applications. J Appl Polym Sci 114:2291–2300CrossRefGoogle Scholar
  53. 53.
    Kurtz HA, Stewart JJP, Dieter KM (1990) Calculation of the nonlinear optical properties of molecules. J Comput Chem 11:82–87CrossRefGoogle Scholar
  54. 54.
    Singer KD, Sohn JE, King LA et al (1989) Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds. J Opt Soc Am B 6:1339–1350CrossRefGoogle Scholar
  55. 55.
    Moylan CR, Twieg RJ, Lee VY et al (1993) Nonlinear optical chromophores with large hyperpolarizabilities and enhanced thermal stabilities. J Am Chem Soc 115:12599–12600CrossRefGoogle Scholar
  56. 56.
    Jayakrishnan K, Joseph A, Mathew P et al (2016) Synthesis, Z-Scan and Degenerate Four Wave Mixing characterization of certain novel thiocoumarin derivatives for third order nonlinear optical applications. Opt Mater (Amst) 58:171–182CrossRefGoogle Scholar
  57. 57.
    Henari FZ, Blau WJ, Milgrom LR et al (1997) Third-order optical non-linearity in Zn(II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins. Chem Phys Lett 267:229–233CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Dyestuff TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations