Hydroporphyrins in Fluorescence In Vivo Imaging

  • Marcin PtaszekEmail author
Part of the Reviews in Fluorescence book series (RFLU)


Over the last several years significant progress has been made on the development of near infrared (near-IR) organic, inorganic, and nanomaterial fluorophores for diagnostic and therapeutic applications (Ptaszek M, Prog Mol Biol Transl Sci 113:59–108, 2013; Chernov KG, Redchuk TA, Omelina ES, Verkusha VV, Chem Rev 117:6423–6446, 2017; Chen G, Qiu H, Prasad PN, Chen X, Chem Rev 114:5161–5214, 2014; Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H, Chem Rev 115:10725–10815, 2015; Smith BR, Gambhir SS, Chem Rev 117:901–986, 2017; Xu G, Zeng S, Zzhang B, Swihart MT, Yong K-T, Prasad P, Chem Rev 117:901–986, 2017; Zhou J, Yang Y, Zhang C-y, Chem Rev 115:11669–11717, 2015; Hong G, Diao S, Antaris AL, Dai H, Chem Rev 117:6423–6446, 2017) .Among them, hydroporphyrins have emerged as a class of photonic agents, with a set of unique properties, which may expand the frontiers of fluorescence medicinal imaging. This article discusses basic optical and photochemical properties of hydroporphyrins, reviews their applications as contrast agents for in vivo fluorescence imaging, and highlights recent advances in the development of hydroporphyrin energy transfer arrays with potential applications in fluorescence imaging.


Near-IR fluorophores Chlorins Bacteriochlorins Fluorescence bioimaging Multicolor fluorescence imaging 



Author thanks National Cancer Institute of the National Institutes of Health (award U01CA181628) for supporting his work on near-IR fluorophores for in vivo imaging, and Mr. Adam Meares for valuable discussion.


  1. 1.
    Ptaszek M (2013) Rational design of fluorophores for in vivo applications. Prog Mol Biol Transl Sci 113:59–108CrossRefGoogle Scholar
  2. 2.
    Chernov KG, Redchuk TA, Omelina ES, Verkusha VV (2017) Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. Chem Rev 117:6423–6446CrossRefGoogle Scholar
  3. 3.
    Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214CrossRefGoogle Scholar
  4. 4.
    Dong H, Du S-R, Zheng X-Y, Lyu G-M, Sun L-D, Li L-D, Zhang P-Z, Zhang C, Yan C-H (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815CrossRefGoogle Scholar
  5. 5.
    Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986CrossRefGoogle Scholar
  6. 6.
    Xu G, Zeng S, Zzhang B, Swihart MT, Yong K-T, Prasad P (2017) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 117:901–986CrossRefGoogle Scholar
  7. 7.
    Zhou J, Yang Y, Zhang C-y (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717CrossRefGoogle Scholar
  8. 8.
    Hong G, Diao S, Antaris AL, Dai H (2017) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 117:6423–6446CrossRefGoogle Scholar
  9. 9.
    Kobayashi M, Akiyama M, Kano H, Kise H (2006) In: Grimm B, Porra RR, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls biochemistry, biophysics, function and applications. Springer, Dordrecht, pp 79–94 Derivative for biocompatible cancer cell imaging. Dyes Pigments, 2017, 136, 17–23CrossRefGoogle Scholar
  10. 10.
    Lash TD (2011) Origin of aromatic character in Porphyrinoid systems. J Porphyrins Phthalocyanines 15:1093–1115CrossRefGoogle Scholar
  11. 11.
    Gouterman M (1961) Spectra of Porphyrins. J Mol Spectrosc 6:138–163CrossRefGoogle Scholar
  12. 12.
    Gouterman M, Wagnière GH (1963) Spectra of porphyrins part II four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar
  13. 13.
    Lindsey JS (2015) De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 115:6534–6620CrossRefGoogle Scholar
  14. 14.
    Taniguchi M, Lindsey JS (2017) Synthetic chlorins, possible surrogates for chlorophylls, prepared by derivatization of porphyrins. Chem Rev 117:344–535CrossRefGoogle Scholar
  15. 15.
    Brückner C, Samankumara L, Ogikubo J (2012) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin sciences, vol 17. World Scientific, River Edge, NY, pp 1–112Google Scholar
  16. 16.
    Tamiaki H, Kunieda M (2011) In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin sciences, vol 11. World Scientific Publishing, Hackensack, NJ/London/Singapore/Beijing/Shanghai/Hong-Kong/Taipei/Chennai, pp 223–285Google Scholar
  17. 17.
    Kee HL, Kirmaier C, Tang Q, Diers JR, Muthiah C, Taniguchi M, Laha JK, Ptaszek M, Lindsey JS, Bocian DF, Holten D (2007) Effects of substituents on synthetic analogs of chlorophylls. Part 1: synthesis, vibrational properties and excited-state decay characteristics. Photochem Photobiol 83:1110–1124CrossRefGoogle Scholar
  18. 18.
    Faries K;M, Diers JR, Springer JW, Yang E, Ptaszek M, Lahaye D, Krayer M, Taniguchi M, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2015) Photophysical properties and electronic structure of chlorin-imides: bridging the gap between chlorins and bacteriochlorins. J Phys Chem B 119:7503–7515CrossRefGoogle Scholar
  19. 19.
    Yang E, Kirmaier C, Krayer M, Taniguchi M, Kim H-J, Diers JR, Bocian DF, Lindsey JS, Holten D (2011) Photophysical properties and electronic structure of stable, tunable synthetic bacteriochlorins: extending the feature of native photosynthetic pigments. J Phys Chem B 115:10801–10816CrossRefGoogle Scholar
  20. 20.
    Strachan J-P, O’Shea DF, Balasubramanian T, Lindsey JS (2000) Rational synthesis of meso-substituted chlorin building blocks. J Org Chem 65:3160–3172CrossRefGoogle Scholar
  21. 21.
    Kee HL, Nothdurft R, Muthiah C, Diers JR, Fan D, Ptaszek M, Bocian DF, Lindsey JS, Culver JP, Holten D (2008) Examination of chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes. Photochem Photobiol 84:1061CrossRefGoogle Scholar
  22. 22.
    Kim H-J, Lindsey JS (2005) De novo synthesis of stable tetrahydroporphyrinic macrocycles: bacteriochlorins and a tetradehydrocorrin. J Org Chem 70:5475–5486CrossRefGoogle Scholar
  23. 23.
    Taniguchi M, Cramer DL, Bhise AD, Kee HL, Bocian DF, Holten D, Lindsey JS (2008) Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins. New J Chem 32:947–958CrossRefGoogle Scholar
  24. 24.
    Ra D, Gauger KA, Muthukumaran K, Balasubramanian B, Chandrashaker V, Taniguchi M, Yu Z, Talley DC, Ehudin M, Ptaszek M, Lindsey JS (2015) Progress towards synthetic chlorins with graded polarity, conjugatable substituents, and wavelength tunability. J Porphyrins Phthalocyanines 19:547–572CrossRefGoogle Scholar
  25. 25.
    Yu Z, Pancholi C, Bhagavathy GV, Kang HS, Nguyen JK, Ptaszek M (2014) Strongly conjugated hydroporphyrin dyads: extensive modification of hydroporphyrins’ properties by expanding the conjugated system. J Org Chem 79:7910–7925CrossRefGoogle Scholar
  26. 26.
    Yu Z, Ptaszek M (2013) Near-IR emissive chlorin-bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength. J Org Chem 78:10678–10691CrossRefGoogle Scholar
  27. 27.
    Meares A, Santhanam N, Satraitis A, Yu Z, Ptaszek M (2015) Deep-red emissive BODIPY-chlorin arrays, excitable with green and deep-red light. J Org Chem 80:3858–3869CrossRefGoogle Scholar
  28. 28.
    Vairaprakash P, Yang E, Sahin T, Taniguchi M, Krayer M, Diers JR, Wang A, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2015) Extending the short and long wavelength limits of bacteriochlorin near-infrared absorption via dioxo- and bisimide-functionalization. J Phys Chem B 119:4382–4395CrossRefGoogle Scholar
  29. 29.
    Huang Y-Y, Mroz P, Zhiyentayev T, Sharma SK, Balasubramanian T, Ruzié C, Krayer M, Fan D, Borbas KE, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) In vitro photodynamic therapy and quantitative structure – activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers. J Med Chem 53:4018–4027CrossRefGoogle Scholar
  30. 30.
    Yang E, Ruzie C, Krayer M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2013) Photophysical properties and electronic structure of bacteriochlorin-chalcones with extended near-infrared absorption. Photochem Photobiol 89:586–604CrossRefGoogle Scholar
  31. 31.
    Yung E, Zhang N, Krayer M, Taniguchi M, Diers JR, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2016) Integration of cyanine, merocyanine and styryl dye motifs with synthetic bacteriochlorins. Photochem Photobiol 92:111–125CrossRefGoogle Scholar
  32. 32.
    Chen C-Y, Sun E, Fan M, Taniguchi M, McDowell BE, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS (2011) Synthesis and physicochemical properties of metallobacteriochlorin. Inorg Chem 51:9443–9464CrossRefGoogle Scholar
  33. 33.
    Robinson BC (2000) Bacteriopurpurins: synthesis from meso-diacrylate substituted porphyrins. Tetrahedron 56:6005–6014CrossRefGoogle Scholar
  34. 34.
    Arnaut LG (2011) Design of porphyrin-based photosensitizers for photodynamic therapy. Adv Inorg Chem 63:167–233Google Scholar
  35. 35.
    Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362CrossRefGoogle Scholar
  36. 36.
    Grin MA, Mironov AF, Shtil AA (2008) Bacteriochlorophyll a and its derivatives: chemistry and perspectives for Cancer therapy. Anti Cancer Agents Med Chem 8:683CrossRefGoogle Scholar
  37. 37.
    Kobayashi H, Ogawa M, Choyke M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640CrossRefGoogle Scholar
  38. 38.
    Kobayashi H, Longmire MR, Ogawa M, Choyke PL (2011) Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 40:4626–4648CrossRefGoogle Scholar
  39. 39.
    Chen J, Stefflova K, Niedre M, Wilson BC, Chance B, Glickson JD, Zheng G (2004) Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc 126:11450–11451CrossRefGoogle Scholar
  40. 40.
    Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Nat Acad Sci 104:8989–8994CrossRefGoogle Scholar
  41. 41.
    Liu TW, Akens MK, Chen J, Wise-Milestone L, Wilson BC, Zheng G (2011) Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug Chem 22:1021–1030CrossRefGoogle Scholar
  42. 42.
    Chen J, Liu TWB, Lo P-C, Wilson BC, Zheng G (2009) “Zipper” molecular beacons: a generalized strategy to optimize the performance of activatable protease probe. Bioconjug Chem 20:1836–1842CrossRefGoogle Scholar
  43. 43.
    Stefflova K, Chen J, Marotta D, Li H, Zheng G (2006) Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem 49:3850–3856CrossRefGoogle Scholar
  44. 44.
    Lo P-C, Chen J, Stefflova K, Warren MS, Navab R, Bandarchi B, Mullins S, Tsao M, Cheng JD, Zheng G (2009) Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblast for diagnosis and treatment of epithelial cancers. J Med Chem 52:358–368CrossRefGoogle Scholar
  45. 45.
    Popov AV, Mawn TM, Kim S, Zheng G, Delikatny EJ (2010) Design and synthesis of phospholipase C and A2-activatable near-infrared fluorescent smart probes. Bioconjug Chem 21:1724–1727CrossRefGoogle Scholar
  46. 46.
    Mawn TM, Popov AV, Beardsley NJ, Stefflova K, Milkevitch M, Zheng G, Delikatny EJ (2011) In vivo detection of phospholipase C by enzyme-activated near-infrared probes. Bioconjug Chem 22:2434–2443CrossRefGoogle Scholar
  47. 47.
    Lovell JF, Chan MW, Qi Q, Chen J, Zheng G (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133:18580–18582CrossRefGoogle Scholar
  48. 48.
    Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater 10:324–332CrossRefGoogle Scholar
  49. 49.
    Nopondo EN, Yu Z, Wiratan L, Satraitis A, Ptaszek M (2016) Bacteriochlorin dyads as solvent polarity dependent near-infrared fluorophores and reactive oxygen species photosensitizers. Org Lett 18:4590–4593CrossRefGoogle Scholar
  50. 50.
    Zhang M, Zhang Z, Blessington D, Li H, Busch TM, Madrak V, Miles J, Chance B, Glickson JD, Zheng G (2003) Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporter. Bioconjug Chem 14:709–714CrossRefGoogle Scholar
  51. 51.
    Zheng G, Li H, Zhang M, Lund-Katz S, Chance B, Glickson JD (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl Oleate as target specific photosensitizer. Bioconjug Chem 13:392–396CrossRefGoogle Scholar
  52. 52.
    Stefflova K, Li H, Zheng G (2007) Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem 18:379–388CrossRefGoogle Scholar
  53. 53.
    Liu TWB, Chen J, Burgess L, Cao W, Shi J, Wilson BC, Zheng G (2011) Multimodal bacteriochlorophyll theranostic agent. Theranostics 1:354–362CrossRefGoogle Scholar
  54. 54.
    Cao W, Ng KK, Corbin I, Zhang Z, Ding L, Chen J, Zheng G (2009) Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjug Chem 20:2023CrossRefGoogle Scholar
  55. 55.
    Li Y, Zhang F, Wang X-F, Chen G, Fu X, Tian W, Kitao O, Tamiaki H, Sasaki S i (2017) Pluronic micelle-encapsulated red-photoluminescent chlorophyll derivative for biocompatible cancer cell imaging. Dyes Pigments 136:17–23CrossRefGoogle Scholar
  56. 56.
    Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90CrossRefGoogle Scholar
  57. 57.
    Regino CAS, Ogawa M, Alford R, Wong KJ, Kosaka N, Williams M, Field BJ, Takahashi M, Choyke PL, Kobayashi H (2010) Two-step synthesis of galactosylated human serum albumin as a targeted optical imaging agent for peritoneal carcinomatosis. J Med Chem 53:1579–1586CrossRefGoogle Scholar
  58. 58.
    Vinita AM, Sano K, Yu Z, Nakajima T, Choyke P, Ptaszek M, Kobayashi H (2012) Galactosyl human serum albumin-NMP1 conjugate: a near infrared-near (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases. Bioconjug Chem 23:1671–1679CrossRefGoogle Scholar
  59. 59.
    Harada T, Sano K, Sato K, Watanabe R, Yu Z, Hanaoka H, Nakajima T, Choyke PL, Ptaszek M, Kabayashi H (2014) Activatable organic near-infrared fluorescent probes based on a bacteriochlorin platform: synthesis and multicolor in vivo imaging with a single excitation. Bioconjug Chem 25:362–369CrossRefGoogle Scholar
  60. 60.
    Akers W, Lesage F, Holten D, Achilefu S (2007) In vivo resolution of multiexponential decay of multiple near-infrared molecular probes by fluorescence lifetime-gated whole-body time-resolved diffuse optical imaging. Mol Imaging 6:237–246CrossRefGoogle Scholar
  61. 61.
    Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42:29–43CrossRefGoogle Scholar
  62. 62.
    Jiao G-S, Thoresen LH, Kim TG, Haaland WC, Gao F, Topp MR, Hochstrasser RM, Metzker ML, Burgess K (2006) Synthesis, photophysical properties and applications of through-bond energy-transfer cassettes for biotechnology. Chem Eur J 12:7616–7626CrossRefGoogle Scholar
  63. 63.
    Birks B (1970) Photophysics of aromatic molecules. Wiley Interscience, New YorkGoogle Scholar
  64. 64.
    Kee HL, Diers RJ, Ptaszek M, Muthiah C, Fan D, Bocian DF, Lindsey JS, Culver JP, Holten D (2009) Chlorin-bacteriochlorin energy-transfer dyads as prototypes for near-infrared molecular imaging probes: controlling charge-transfer and fluorescence properties in polar media. Photochem Photobiol 85:909–920CrossRefGoogle Scholar
  65. 65.
    Muthiah C, Kee HL, Diers JR, Fan D, Ptaszek M, Bocian DF, Holten D, Lindsey JS (2008) Synthesis and excited-state photodynamics of a chlorin-bacteriochlorin dyad: through-space versus through-bond energy transfer in tetrapyrrole arrays. Photochem Photobiol 84:786–801CrossRefGoogle Scholar
  66. 66.
    Ptaszek M, Kee HL, Muthiah C, Nothdurft R, Akers W, Achilefu C, Culver JP, Holten D (2010) Niear infrared imaging probes based on chlorin-bacteriochlorin dyads. SPIE-Int Soc Opt Eng 7576E:1–9Google Scholar
  67. 67.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: synthesis and spectroscopic properties. Chem Rev 107:4891–4932CrossRefGoogle Scholar
  68. 68.
    Meares A, Satraitis A, Akhigbe J, Santhanam N, Swaminathan S, Ehudin M, Ptaszek M (2017) Amphiphilic BODIPY-hydroporphyrin energy transfer arrays with broadly tunable absorption and deep red/near-infrared emission in aqueous micelles. J Org Chem 82:6054–6070CrossRefGoogle Scholar
  69. 69.
    Laakso J, Rosser GA, Szijjártó C, Beeby A, Borbas KE (2012) Synthesis of chlorin-sensitized near infrared-emitting lanthanide complexes. Inorg Chem 51:10366–10374CrossRefGoogle Scholar
  70. 70.
    Xiong R, Andres J, Scheffler K, Borbas KE (2015) Synthesis and characterization of lanthanide-hydroporphyrin dyads. Dalton Trans 44:2541–2553CrossRefGoogle Scholar
  71. 71.
    Sutton JM, Clarke OJ, Fernandez N, Boyle RWP (2002) Chlorin and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive conjugates. Bioconjug Chem 13:249–263CrossRefGoogle Scholar
  72. 72.
    Singh S, Aggarwal A, Thompson S, Tomé JPC, Zhu X, Samaroo D, Vinodu M, Gao R, Drain CM (2010) Bioconjug Chem 21:2136CrossRefGoogle Scholar
  73. 73.
    Liu M, Chen C-Y, Mandal AK, Chamdrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS (2016) Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, red-emitting chlorins. New J Chem 40:7721–7740CrossRefGoogle Scholar
  74. 74.
    Yu Z, Ptaszek M (2012) Multifunctional bacteriochlorins from selective palladium-coupling reactions. Org Lett 14:3708–3711CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations