Advertisement

Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): A Rapid, < 10 Copy Number Detection Platform

  • Tonya M. Santaus
  • Chris D. GeddesEmail author
Chapter
Part of the Reviews in Fluorescence book series (RFLU)

Abstract

In this chapter, we review a three-piece assay called microwave-accelerated metal-enhanced fluorescence (MAMEF). This method is rapid and efficient for detecting various proteins and DNA/RNA fragments from a range of bacteria. Currently, bacterial detection and identification are underpinned by robust instrumentation and cell cultures. Molecular detection strategies are available to detect DNA/RNA and proteins in time periods that range from hours to days. These strategies use various reagents, costly instrumentation, and can be time-consuming.

The MAMEF assay eliminates the need to amplify DNA and culturing methods for detection and has been developed by our research group over several years for the detection of various bacteria. The assay is based on the principles of metal-enhanced fluorescence and has undergone extensive experimental testing and clinical validations. In this chapter, we subsequently review the overarching principles behind MAMEF, the development of protein assays for anthrax and myoglobin, and DNA hybridization assays for Salmonella, Chlamydia, and Gonorrhea. Microwave-accelerated metal-enhanced fluorescence offers the significant benefit of rapid protein and DNA/RNA detection without the need for thermo-cycling-based amplification and culturing methods, which are widely used today, despite their significant run times.

Keywords

Microwave-accelerated metal-enhanced fluorescence DNA detection Protein detection Rapid detection Low-copy number detection 

References

  1. 1.
    Gaydos CA, Cartwright CP, Colaninno P, Welsch J, Holden J, Ho SY, Webb EM, Anderson C, Bertuzis R, Zhang L, Miller T, Leckie G, Abravaya K, Robinson J (2010) Performance of the Abbott RealTime CT/NG for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 48(9):3236–3243CrossRefGoogle Scholar
  2. 2.
    Gaydos CA, Quinn TC, Willis D, Weissfeld A, Hook EW, Martin DH, Ferrero DV, Schachter J (2003) Performance of the APTIMA Combo 2 assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol 41(1):304–309CrossRefGoogle Scholar
  3. 3.
    Van Der Pol B, Liesenfeld O, Williams JA, Taylor SN, Lillis RA, Body BA, Nye M, Eisenhut C, Hook EW III (2012) Performance of the Cobas CT/NG test compared to the Aptima AC2 and Viper CTQ/GCQ assays for detection of chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 50:2244–2249CrossRefGoogle Scholar
  4. 4.
    Mullis K (1990) The unusual origin of the polymerase chain reaction. Sci Am 262(4):56–65CrossRefGoogle Scholar
  5. 5.
    Bae J-H, Sohn J-H (2010) Template-blocking PCR: an advanced PCR technique for genome walking. Anal Biochem 398:112–116CrossRefGoogle Scholar
  6. 6.
    Chiminqgi M, Moutereau S, Pernet P, Conti M, Barbu V, Lemant J, Sacko M, Vaubourdolle M, Loric S (2007) Specific real-time PCR vs. fluorescent dyes for serum free DNA quantification. Clin Chem Lab Med 45(8):993–995CrossRefGoogle Scholar
  7. 7.
    Crosby LD, Criddle CS (2007) Gene capture and random amplification for quantitative recovery of homologous genes. Mol Cell Probes 21:140–147CrossRefGoogle Scholar
  8. 8.
    Dragan A, Geddes C (2014) 5-color multiplexed microwave-accelerated metal-enhanced fluorescence: detection and analysis of multiple DNA sequences from within one sample well within a few seconds. J Fluoresc 24(6):1715CrossRefGoogle Scholar
  9. 9.
    Aslan K, Geddes C (2008) A review of an ultrafast and sensitive bioassay platform technology: microwave-accelerated metal-enhanced fluorescence. Plasmonics 3(2–3):89CrossRefGoogle Scholar
  10. 10.
    Melendez JH, Huppert JS, Jett-Goheen M, Hesse EA, Quinn N, Gaydos CA, Geddes CD (2013) Blind evaluation of the microwave-accelerated metal-enhanced fluorescence ultrarapid and sensitive Chlamydia trachomatis test by use of clinical samples. J Clin Microbiol 51(9):2913–2920CrossRefGoogle Scholar
  11. 11.
    Aslan K, Holley P, Geddes CD (2006) Research paper: microwave-accelerated metal-enhanced fluorescence (MAMEF) with silver colloids in 96-well plates: application to ultra fast and sensitive immunoassays, high throughput screening and drug discovery. J Immunol Methods 312:137–147CrossRefGoogle Scholar
  12. 12.
    Dragan AI, Albrecht MT, Pavlovic R, Keane-Myers AM, Geddes CD (2012) Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence. Anal Biochem 425:54–61CrossRefGoogle Scholar
  13. 13.
    Ellenius J, Groth T, Lindahl B, Wallentin L (1997) Early assessment of patients with suspected acute myocardial infarction by biochemical monitoring and neural network analysis. Clin Chem 43(10):1919–1925PubMedGoogle Scholar
  14. 14.
    Newby LK, Storrow AB, Gibler WB, Garvey JL, Tucker JF, Kaplan AL, Schreiber DH, Tuttle RH, McNulty SE, Ohman EM (2001) Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 103(14):1832–1837CrossRefGoogle Scholar
  15. 15.
    Storrow AB, Gibler WB (1999) The role of cardiac markers in the emergency department. Clin Chim Acta 284(2):187–196CrossRefGoogle Scholar
  16. 16.
    Aslan K, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF): application to ultra fast and sensitive clinical assays. J Fluoresc 16(1):3–8CrossRefGoogle Scholar
  17. 17.
    Aslan K, Geddes CD (2006) Microwave-accelerated and metal-enhanced fluorescence myoglobin detection on silvered surfaces: potential application to myocardial infarction diagnosis. Plasmonics (Norwell, Mass.) 1(1):53–59CrossRefGoogle Scholar
  18. 18.
    Lakowicz JR (2006) Chapter 21. DNA Technology. In: Principles of fluorescent spectroscopy, 3rd edn. Spinger Science + Business Media, LLC, Berlin/Heiderlberg, pp 705–740CrossRefGoogle Scholar
  19. 19.
    Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37CrossRefGoogle Scholar
  20. 20.
    Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067CrossRefGoogle Scholar
  21. 21.
    Adak GK, Long SM, O'Brien SJ (2002) Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut 51(6):832–841CrossRefGoogle Scholar
  22. 22.
    Kennedy M, Villar R, Vugia DJ, Rabatsky-Ehr T, Farley MM, Pass M, Smith K, Smith P, Cieslak PR, Imhoff B, Griffin PM (2004) Hospitalizations and deaths due to Salmonella infections, FoodNet, 1996–1999. Clin Infect Dis 38(Suppl 3):S142–S148CrossRefGoogle Scholar
  23. 23.
    Levy SB, Zimmermann O, de Ciman R, Gross U, Berkley JA, Lowe BS, Scott JAG (2005) Bacteremia among Kenyan children. Berkley JA, Lowe BS, Mwangi I et al. Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352:39–47 N Engl J Med 2005, 352(13):1379–1381CrossRefGoogle Scholar
  24. 24.
    Graham SM, Molyneux EM, Walsh AL, Cheesbrough JS, Molyneux ME, Hart CA (2000) Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr Infect Dis J 19(12):1189–1196CrossRefGoogle Scholar
  25. 25.
    Hill PC, Onyeama CO, Ikumapayi UNA, Secka O, Ameyaw S, Simmonds N, Donkor SA, Howie SR, Tapgun M, Corrah T, Adegbola RA (2007) Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect Dis 7(1):2–8CrossRefGoogle Scholar
  26. 26.
    Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Hart CA (2006) Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol 6:101–110CrossRefGoogle Scholar
  27. 27.
    Levy H, Diallo S, Tennant SM, Livio S, Sow SO, Tapia M, Fields PI, Mikoleit M, Tamboura B, Kotloff KL, Lagos R, Nataro JP, Galen JE, Levine MM (2008) PCR method to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella isolates from the blood of patients with clinical enteric fever. J Clin Microbiol 46(5):1861–1866CrossRefGoogle Scholar
  28. 28.
    Walsh AL, Phiri AJ, Graham SM, Molyneux EM, Molyneux ME (2000) Bacteremia in febrile Malawian children: clinical and microbiologic features. Pediatr Infect Dis J 19(4):312–318CrossRefGoogle Scholar
  29. 29.
    Tennant SM, Yongxia Z, Galen JE, Geddes CD, Levine MM (2011) Ultra-fast and sensitive detection of non-typhoidal Salmonella using microwave-accelerated metal-enhanced fluorescence ("MAMEF"). PLoS One 6(4):1–8CrossRefGoogle Scholar
  30. 30.
    Gradel KO, Schønheyder HC, Pedersen L, Thomsen RW, Nørgaard M, Nielsen H (2006) Incidence and prognosis of non-typhoid Salmonella bacteraemia in Denmark: a 10-year county-based follow-up study. Eur J Clin Microbiol Infect Dis 25(3):151–158CrossRefGoogle Scholar
  31. 31.
    Papaevangelou V, Syriopoulou V, Charissiadou A, Pangalis A, Mostrou G, Theodoridou M (2004) Salmonella bacteraemia in a tertiary children’s hospital. Scand J Infect Dis 36(8):547–551CrossRefGoogle Scholar
  32. 32.
    Threlfall EJ, Hall ML, Rowe B (1992) Salmonella bacteraemia in England and Wales, 1981–1990. J Clin Pathol 45(1):34–36CrossRefGoogle Scholar
  33. 33.
    Tennant SM, Diallo S, Levy H, Livio S, Sow SO, Tapia M, Fields PI, Mikoleit M, Tamboura B, Kotloff KL, Nataro JP, Galen JE, Levine MM (2010) Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl Trop Dis 4(3):1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Fluorescence, Department of Chemistry and BiochemistryUniversity of Maryland, Baltimore CountyBaltimoreUSA
  2. 2.Institute of FluorescenceUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations