Simulation of Surface Plasmon Waves Based on Kretschmann Configuration Using the Finite Element Method

  • Tanaporn LeelawattananonEmail author
  • Suphamit Chittayasothorn
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 873)


This paper presents the simulation of optically activated surface plasmon waves based on Kretschmann configuration by using prism. Simulated electric fields of the surface plasmon wave which appears at the interface between the metal thin film and dielectric layer are observed. The occurences of surface plasmon wave can be applied to biomolecular sensing and high speed data communications at the THz level. The simulations employ the finite element method (FEM). The light source is the 632.5 nm red laser which is economical and easy to obtained commercially. Two simulation models are conducted. The first simulation model employs copper thin film on the prism and air as the dielectric layer. This one is intended to find the most suitable copper thin film thickness to produce surface plasmon waves. Copper thin film is used because it is a noble metal which is less expensive than gold but has better conductivity than gold. The second simulation model employs silver, another noble metal which is also less expensive than gold. Silver thin film on prism together with magnesium chloride solution as dielectric layer are simulated. Concentrations of the magnesium chloride solution are varied to find the one which produces good surface plasmon wave pattern. Thus suitable to be used as sensors for biomoleculars such as DNAs.


Surface plasmon wave Kretschmann configuration  Finite Element method Copper thin film Silver thin film 


  1. 1.
    Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials_beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)CrossRefGoogle Scholar
  2. 2.
    Robusto, P., Braunstein, R.: Optical measurements of the surface plasmon of copper. Phys. Stat. sol. (b) 107, 443–449 (1981)CrossRefGoogle Scholar
  3. 3.
    Kravets, V.G., et al.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4(5517), 1–7 (2014)Google Scholar
  4. 4.
    Serra, A., Filippo, E., Re, M., Palmisano, M., Vittori-Antisari, M., Buccolieri, A.: Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 20(16), 165501 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Wei, M., Bingjing, L., Liu, Y., Liua, X., Wei, W.: Sensitive colorimetric detection of glucose and cholesterol by using Au@Ag core–shell nanoparticles. RSC Adv. 6, 35001–35007 (2016)CrossRefGoogle Scholar
  6. 6.
    Chung, H.Y., et al.: Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods. Nanoscale Res. Lett. 9(476), 1–5 (2014)MathSciNetGoogle Scholar
  7. 7.
    Liu, R.J., et al.: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron. 87, 433–438 (2017)CrossRefGoogle Scholar
  8. 8.
    Hsieh, S.C., Chang, C.C., Lu, C.C., Wei, C.F., Lin, C.S., Lai, H.C., Lin, C.W.: Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res. Lett. 7, 1–6 (2012)CrossRefGoogle Scholar
  9. 9.
    Mitchell, J.: Small molecule immunosensing using surface plasmon resonance. Sensors 10, 7323–7346 (2010)CrossRefGoogle Scholar
  10. 10.
    Mariani, S., et al.: Investigating nanoparticle properties in plasmonic nanoarchitectures with DNA by surface plasmon resonance imaging. Chem. Commun. 51, 6587–6590 (2015)CrossRefGoogle Scholar
  11. 11.
    Ahmed, F.E., Wiley, J.E., Weidner, D.A., Bonnerup, C., Mota, H.: Surface plasmon resonance (SPR) spectrometry as a tool to analyze nucleic acid-protein interactions in crude cellular extracts. Cancer Genomics Proteomics 7(6), 303–310 (2010)Google Scholar
  12. 12.
    Teh, H.F., Peh, W.Y.X., Su, X., Thomsen, J.S.: Characterization of protein-DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry 46(8), 2127–2135 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Liu, L., Sha, J., Ni, Z., Yi, H., Chen, Y.: Nanopore detection of DNA molecules in magnesium chloride solutions. Nanoscale Res. Lett. 8, 245 (2013)CrossRefGoogle Scholar
  14. 14.
    Sternberg, K., et al.: Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 100(1), 41–50 (2012)CrossRefGoogle Scholar
  15. 15.
    Suzuki, Y., Shimada, S., Hatta, A., Suëtaka, W.: Enhancement of the IR absorption of a thin film on gold in the otto ATR configuration. Surf. Sci. Lett. (219), L595–L600 (1989)CrossRefGoogle Scholar
  16. 16.
    Leskova, T.A., Leyva-Lucero, M., Méndez, E.R., Maradudin, A.A., Novikov, I.V.: The surface enhanced second harmonic generation of light from a randomly rough metal surface in the Kretschmann geometry. Opt. Commun. (183), 529–545 (2000)CrossRefGoogle Scholar
  17. 17.
    Iadicicco, A., Cusano, A., Campopiano, S., Cutolo, A., Giordano, M.: Thinned fiber Bragg grating as refractive index sensors. IEEE Sens. J. 5(6), 1288–1295 (2005)CrossRefGoogle Scholar
  18. 18.
    Du, W., Zhao, F.: Surface plasmon resonance based silicon carbide optical waveguide sensor. Mater. Lett. (115), 92–95 (2014)CrossRefGoogle Scholar
  19. 19.
    Leelawattananon, T., Lorchalearnrat, K., Chittayasothorn S.: Simulation of copper thin film thickness optimization for surface plasmon using the finite element method. In: the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), pp. 188–195 (2017)Google Scholar
  20. 20.
    Raether, H.: Surface Plasmons on Smooth Surfaces. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  21. 21.
    Refractive Index Database. Accessed 07 Jan 2018
  22. 22.
    Said, F.A., Menon, P.S., Nawi, M.N., Zain, A.R.M., Jalar, A., Majlis, B.Y.: Copper-graphene SPR-based biosensor for urea detection. In: IEEE International Conference on Semiconductor Electronics (ICSE), pp. 264–267 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tanaporn Leelawattananon
    • 1
    Email author
  • Suphamit Chittayasothorn
    • 2
  1. 1.Department of Physics, Faculty of SciencesKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Department of Computer Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations