Partial Differential Equations in Image Processing

  • Kristian Bredies
  • Dirk Lorenz
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Our first encounter with a partial differential equation is this book was Application  3.23 on edge detection according to Canny: we obtained a smoothed image by solving the heat equation. The underlying idea was that images contain information on different spatial scales and one should not fix one scale a priori.


  1. 3.
    L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axioms and fundamental equations in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)zbMATHCrossRefGoogle Scholar
  2. 4.
    H. Amann, Time-delayed Perona-Malik type problems. Acta Math. Univ. Comenian. N. Ser. 76(1), 15–38 (2007)MathSciNetzbMATHGoogle Scholar
  3. 12.
    C. Bär, Elementary Differential Geometry (Cambridge University Press, Cambridge, 2010). Translated from the 2001 German original by P. MeerkampGoogle Scholar
  4. 13.
    M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, in Proceedings of SIGGRAPH 2000, New Orleans (2000), pp. 417–424Google Scholar
  5. 15.
    F. Bornemann, T. März, Fast image inpainting based on coherence transport. J. Math. Imaging Vis. 28(3), 259–278 (2007)MathSciNetCrossRefGoogle Scholar
  6. 20.
    M. Breuß, J. Weickert, A shock-capturing algorithm for the differential equations of dilation and erosion. J. Math. Imaging Vis. 25(2), 187–201 (2006)MathSciNetCrossRefGoogle Scholar
  7. 22.
    H. Brézis, Analyse fonctionnelle - Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise (Masson, Paris, 1983)Google Scholar
  8. 30.
    F. Catté, P.-L. Lions, J.-M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 32.
    A. Chambolle, B.J. Lucier, Interpreting translation-invariant wavelet shrinkage as a new image smoothing scale space. IEEE Trans. Image Process. 10, 993–1000 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 35.
    A. Chambolle, R.A. DeVore, N. Lee, B.J. Lucier, Nonlinear wavelet image processing: variational problems, compression and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7, 319–335 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 44.
    Y. Chen, K. Zhang, Young measure solutions of the two-dimensional Perona-Malik equation in image processing. Commun. Pure Appl. Anal. 5(3), 615–635 (2006)MathSciNetzbMATHGoogle Scholar
  12. 45.
    U. Clarenz, U. Diewald, M. Rumpf, Processing textured surfaces via anisotropic geometric diffusion. IEEE Trans. Image Process. 13(2), 248–261 (2004)CrossRefGoogle Scholar
  13. 47.
    R. Courant, K.O. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 52.
    U. Diewald, T. Preußer, M. Rumpf, Anisotropic diffusion in vector field visualization on Euclidean domains and surfaces. IEEE Trans. Visual. Comput. Graph. 6(2), 139–149 (2000)CrossRefGoogle Scholar
  15. 54.
    D.L. Donoho, Denoising via soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)zbMATHCrossRefGoogle Scholar
  16. 59.
    S. Esedoḡlu, Stability properties of the Perona-Malik scheme. SIAM J. Numer. Anal. 44(3), 1297–1313 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 72.
    M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, 3rd edn. (Vieweg+Teubner, Wiesbaden, 2009)zbMATHCrossRefGoogle Scholar
  18. 79.
    G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 83.
    B. Kawohl, N. Kutev, Maximum and comparison principle for one-dimensional anisotropic diffusion. Math. Ann. 311, 107–123 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 85.
    S.L. Keeling, R. Stollberger, Nonlinear anisotropic diffusion filtering for multiscale edge enhancement. Inverse Probl. 18(1), 175–190 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 86.
    S. Kichenassamy, The Perona-Malik paradox. SIAM J. Appl. Math. 57, 1328–1342 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 88.
    J.J. Koenderink, The structure of images. Biol. Cybern. 50(5), 363–370 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 98.
    D. Marr, E. Hildreth, Theory of edge detection. Proc. R. Soc. Lond. 207, 187–217 (1980)CrossRefGoogle Scholar
  24. 106.
    S.J. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 110.
    P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  26. 111.
    G. Plonka, G. Steidl, A multiscale wavelet-inspired scheme for nonlinear diffusion. Int. J. Wavelets Multiresolut. Inf. Process. 4(1), 1–21 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 115.
    T. Preußer, M. Rumpf, An adaptive finite element method for large scale image processing. J. Vis. Commun. Image Represent. 11(2), 183–195 (2000)CrossRefGoogle Scholar
  28. 120.
    E. Rouy, A. Tourin, A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 135.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis. Texts in Applied Mathematics, vol. 12, 3rd edn. (Springer, New York, 2002). Translated from the German by R. Bartels, W. Gautschi and C. WitzgallGoogle Scholar
  30. 139.
    J.B. Weaver, Y. Xu, D.M. Healy Jr., L.D. Cromwell, Filtering noise from images with wavelet transforms. Magn. Reson. Med. 21, 288–295 (1991)CrossRefGoogle Scholar
  31. 140.
    J. Weickert, Anisotropic Diffusion in Image Processing. European Consortium for Mathematics in Industry (B. G. Teubner, Stuttgart, 1998)Google Scholar
  32. 142.
    M. Welk, J. Weickert, G. Steidl, A four-pixel scheme for singular differential equations, in Scale-Space and PDE Methods in Computer Vision, ed. by R. Kimmel, N. Sochen, J. Weickert. Lecture Notes in Computer Science, vol. 3459 (Springer, Berlin, 2005), pp. 610–621Google Scholar
  33. 144.
    A.P. Witkin, Scale-space filtering, in Proceedings of the International Joint Conference on Artificial Intelligence (1983), pp. 1019–1021Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Kristian Bredies
    • 1
  • Dirk Lorenz
    • 2
  1. 1.Institute for Mathematics and ScientificUniversity of GrazGrazAustria
  2. 2.BraunschweigGermany

Personalised recommendations