Compressional Tectonics Since Late Maastrichtian to Quaternary in Tunisian Atlas

  • Hedi ZouariEmail author
  • Achraf Zouari
  • Fehmy Belghouthi
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Some authors consider that compressional tectonic to have begun in late Cretaceous and continued until Quaternary in the Atlas Mountains of Tunisia. Others propose relaxation periods characterized by distensional tectonic regime. In this study, we made use of detailed geological mapping, fault-slip field data and seismic data from the southern and northern regions of Tunisia, in order to highlight the variation of paleostress during tectonic inversion. Three directions of principal compressive stress σ 1 are deduced from fault-slip data: NW-SE, NE-SW and N-S. The compressive tectonics induce different tectonic regimes: strike slip, compressional strike slip, extensional strike-slip and compressive during Late Maastrichtian-Quaternary period in the Tunisian Atlas. Fold-axes present different directions: E-W, N-S, NW-SE and NE-SW. In some localities, major faults juxtapose folds which makes their axes are perpendicular. This structural complexity and the change of stress axis can mainly be related to two factors: (1) variation of geometry and kinematics of African plate boundary which can generate several shortening directions (2) heterogeneity of sedimentary cover due to detachment layers and to pre-existent structures as fault and diapirs which contributes to reorient the stress direction.


Atlas Tunisia Compressive regime Late Maastrichtian to quaternary Paleostress 


  1. 1.
    Alyahyaoui, S., Zouari, H.: Synsedimentary folding process and transtensive tectonic during Late Miocene to Quaternary in northeastern Tunisia: case of Mateur-Menzel Bourguiba region. Arab. J. Geosci. 7, 4957–4973 (2014). Scholar
  2. 2.
    Ben Ayed, N.: Evolution tectonique de l’avant pays de la chaîne alpine de Tunisie du début du Mesozoïque à l’actuel (Thèse de doctorat d’Etat). Paris Sud, Paris (1986)Google Scholar
  3. 3.
    Chihi, L.: Les fossés néogènes et quaternaires de la Tunisie et de la mer pélagienne, étude structurale et leur signification dans le cadre de la géodynamique de la Méditerranée (Thèse de doctorat d’Etat). Tunis el Manar II, Tunis (1995)Google Scholar
  4. 4.
    Delvaux, D., Sperner, B.: New aspects of tectonic stress inversion with reference to the TENSOR program. Geol. Soc. Lond. Spec. Publ. 212, 75–100 (2003). Scholar
  5. 5.
    Frizon de Lamotte, D., Saint Bezar, B., Bracène, R., Mercier, E.: The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19, 740–761 (2000). Scholar
  6. 6.
    Khomsi, S., Ben Jemia, M.G., de Lamotte, D.F., Maherssi, C., Echihi, O., Mezni, R.: An overview of the Late Cretaceous-Eocene positive inversions and Oligo-Miocene subsidence events in the foreland of the Tunisian Atlas: structural style and implications for the tectonic agenda of the Maghrebian Atlas system. Tectonophysics 475, 38–58 (2009). Scholar
  7. 7.
    Melki, F., Zouaghi, T., Chelbi, M.B., Bédir, M., Zargouni, F.: Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore. Comptes Rendus Geosci. 342, 741–753 (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hedi Zouari
    • 1
    Email author
  • Achraf Zouari
    • 1
    • 2
  • Fehmy Belghouthi
    • 1
    • 3
  1. 1.Water Researches and Technologies Centre, Technopark of Borj Cédria, Natural Water Treatment LaboratorySolimanTunisia
  2. 2.Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of El ManarTunisTunisia
  3. 3.Faculty of Sciences of BizerteUniversity of CarthageJarzounaTunisia

Personalised recommendations