Paleocene Benthic Foraminifera and Neoeponides duwi Event from Dineigil Area, South-Western Desert, Egypt

  • Mohamed YoussefEmail author
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


Seventy-three rock samples from Dineigil area were used to study the paleo-environments of the Paleocene interval. The foraminiferal assemblage is typically dominated by the Midway-type fauna. The Velasco-type fauna of Paleocene were absent. The foraminiferal distribution of the Paleocene sequence from the study area indicates the deposition from inner to middle neritic environment (50–100 m depth). Neoeponides duwi event in the Paleocene of Egypt comprises an abundant occurrence of N. duwi with the common occurrence of Siphogenerinoides eleganta, costate lenticulinids, and Stainforthia spp in the latest Danian. The N. duwi event gives the evidence that Neoeponides duwi live in restricted environments characterized by oxygen deficiency and rich food resources.


Paleocene Benthic foraminifera Dineigil South Western desert Egypt 



This work is supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.


  1. 1.
    Berggren, W., Aubert, J.: Paleocene benthonic foraminiferal biostratigraphy, paleobiogeography and paleoecology of Atlantic-Tethyan regions: midway-type fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 18, 73–192 (1975)CrossRefGoogle Scholar
  2. 2.
    Berggren, W., Alegret, L., Aubry, M.-P., Cramer, B., Dupuis, C., Goolaerts, S., Kent, D., King, C., Knox, R., Obaidalla, N., Ortiz, S., OudaKh, Sabour A., Salem, R., Senosy, M., Soliman, M., Soliman, A.: The Dababiya corehole: Upper Nile Valley, Egypt: preliminary results. Austrian J. Earth. Sci. 105, 161–168 (2012)Google Scholar
  3. 3.
    Bernaola, G., Baceta, J., Etxebarria, X.: Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees). Geol. Soc. Am. Bull. 119, 785–795 (2007)CrossRefGoogle Scholar
  4. 4.
    Bolle, M.P., Tantawy, A., Pardo, A., Adatte, T., Burns, S., Kassab, A.: Climate and environmental changes documented in the upper Paleocene to lower Eocene of Egypt. Eclogae Geol. Helv. 93, 33–51 (2000)Google Scholar
  5. 5.
    Bornemann, A., Schulte, P., Sprong, J., Steurbaut, E., Youssef, M., Speijer, R.: Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). J. Geol. Soc. Lond. 166, 1135–1142 (2009)CrossRefGoogle Scholar
  6. 6.
    Farouk, S., El-Sorogy, A.: Danian/Selandian unconformity in the central and southern Western Desert of Egypt. J. Afr. Earth Sci. 103, 42–53 (2015)CrossRefGoogle Scholar
  7. 7.
    Hewaidy, A.: Biostratigraphy and paleobathymetry of the Garra-Kurkur area, southwest Aswan, Egypt. Middle East Research Center Ain Shams University. Earth Science Series, vol. 8, pp. 48–73 (1994)Google Scholar
  8. 8.
    Issawi, B.: Review of upper Cretaceous-lower tertiary stratigraphy in central and southern Egypt. Bull. -Am. Assoc. Pet. Geol. 56, 1448–1463 (1972)Google Scholar
  9. 9.
    Khalil, H., Al Sawy, S.: Integrated biostratigraphy, stage boundaries and Paleoclimatology of the Upper Cretaceous-Lower Eocene successions in Kharga and Dakhala Oases, Western Desert Egypt. J. Afr. Earth Sci. 96, 220–242 (2014)CrossRefGoogle Scholar
  10. 10.
    Luger, P.: Stratigraphie der marinen Oberkreide und des Alttertiärs im südwestlichen Obernil-Becken (SW-Ägypten) unterbesonderer Berücksichtibung der Mikropaläontologie, Palökologie und Paläogeographie. Berliner Geowissenschaftliche Abhanlungen 63, 151 (1985)Google Scholar
  11. 11.
    Schnack, K.: Biostratigraphie und fazielle Entwicklung in der Oberkreide und im Alttertiär im Bereich der Kharga Schwelle, Westliche Wüste, Southwest Ägypten. Ph. D. Thesis Nr. 151, Universität Bremen, Bremen, 142 pp (2000)Google Scholar
  12. 12.
    Speijer, R.: Danian–Selandian sea-level change and biotic excursion on the southern Tethyan margin. In: Wing, S.L., Gingerich, P.D., Schmitz, B., Thomas, E. (eds.) Causes and Consequences of Globally Warm Climates in the Early Paleogene: Geological Society of America, Special Paper, vol. 369, pp. 275–290 (2003)Google Scholar
  13. 13.
    Speijer, R., Schmitz, B.: A benthonic foraminiferal record of Paleocene sea level and tropic/redox conditions at Gebel Aweina, Egypt. Palaeogeogr. Palaeoclim. Palaeoecol. 137, 79–101 (1998)Google Scholar
  14. 14.
    Sprong, J., Youssef, M., Bornemann, A., Schulte, P., Steurbaut, E., Stassen, P., Kouwenhoven, T., Speijer, R.: Amulti-proxy record of the latest Danian event at Gebel Qreiya, Eastern Desert Egypt. J. Micropalaeontol. 30, 167–182 (2011)CrossRefGoogle Scholar
  15. 15.
    Sprong, J., Kouwenhoven, T., Bornemann, A., Schulte, P., Stassen, P., Steurbaut, E., Youssef, M., Speijer, R.: Characterization of the latest Danian event by means of benthic foraminiferal assemblages along a depth transect at the southern Tethyan margin (Nile Basin, Egypt). Mar. Micropaleontol. 86–87, 15–31 (2012)CrossRefGoogle Scholar
  16. 16.
    Tantawy, A., Ouda, Kh., Von Salis, K., El Din, M.S.: Biostratigraphy of Paleocene sections. In: Schmitz, B., Sundquist, B., Andreasson, F. (eds.) Early Paleogene Warm Climates and Biosphere Dynamics, GFF, vol. 122, pp. 163–165 (2000)Google Scholar
  17. 17.
    Van Morkhoven, F.P., Berggren, W., Edwards, A.: Cenozoic cosmopolitan deep-water benthic foraminifera. Elf -Aquitaine Mem, vol. 11, 421 (1986)Google Scholar
  18. 18.
    Westerhold, T., Röhl, U., Donner, B., McCarren, K., Zachos, J.: A complete high‐resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography 26, PA2216 (2011)Google Scholar
  19. 19.
    Youssef, M.: Micropaleontological and stratigraphical analyses of the Late Cretaceous/Early Tertiary succession of the Southern Nile Valley (Egypt), Bochum, Germany. Published online, Ph. D. Thesis (2003). http://www.netahtml/Hss/Diss/MohamedMohamedYoussefAli/diss.pdf
  20. 20.
    Zachos, J., Dickens, G., Zeebe, R.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsCollege of Science, King Saud University, KSARiyadhSaudi Arabia
  2. 2.Faculty of Science, Department of GeologySouth Valley UniversityQenaEgypt

Personalised recommendations