A Global Decoding Strategy with a Reduced-Reference Metric Designed for the Wireless Transmission of JPWL

  • Xinwen Xie
  • Philippe Carré
  • Clency Perrine
  • Yannis Pousset
  • Jianhua Wu
  • Nanrun Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11182)


A new global decoding strategy with Reduced-Reference (RR) metric is proposed to improve the Quality of Experience (QoE) in a wireless transmission context. The RR metric (FMRP) utilizes the magnitude and the relative phase information in the complex wavelet domain as the evaluation features. It determines the number of decoder layers to achieve the goal of evaluating the image in a consistent way with the Human Visual system (HVS). To evaluate the performance of the decoding strategy, we collected some distorted images in realistic channel attacks and recruited volunteers to do a large psychovisual test. The distorted images and the classification data of voluntary assessors are integrated into a database which is in a realistic wireless channel context quite different from the classic database. Experimental studies confirm that the decoding strategy is effective and improves the QoE while ensuring the Quality of Service (QoS).


Reduced-reference image quality metric Quality of experience Decoding strategy Support vector machine K-nearest neighbors algorithm 


  1. 1.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  2. 2.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 1392, pp. 1398–1402 (2004)Google Scholar
  3. 3.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Human Vision and Electronic Imaging X, pp. 149–160. International Society for Optics and Photonics (2005)Google Scholar
  5. 5.
    Dufaux, F., Nicholson, D.: JPWL: JPEG 2000 for wireless applications. In: Applications of Digital Image Processing XXVII, pp. 309–319. International Society for Optics and Photonics (2004)Google Scholar
  6. 6.
    Abot, J., Olivier, C., Perrine, C., Pousset, Y.: A link adaptation scheme optimized for wireless JPEG 2000 transmission over realistic MIMO systems. Sig. Process. Image Commun. 27, 1066–1078 (2012)CrossRefGoogle Scholar
  7. 7.
    Abot, J., et al.: A robust content-based JPWL transmission over a realistic MIMO channel under perceptual constraints. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 3241–3244. IEEE (2011)Google Scholar
  8. 8.
    Kingsbury, N.: Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10, 234–253 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    An, V., Oraintara, S.: A study of relative phase in complex wavelet domain: property, statistics and applications in texture image retrieval and segmentation. Sig. Process. Image Commun. 25, 28–46 (2010)CrossRefGoogle Scholar
  10. 10.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1994)CrossRefGoogle Scholar
  11. 11.
    Chartois, Y., Pousset, Y., Vauzelle, R.: A SISO and MIMO radio channel characterization with a 3D ray tracing propagation model in urban environment. In: European Conference on Propagation and Systems, p. 8 (2005)Google Scholar
  12. 12.
    Tutorial, I.: Objective perceptual assessment of video quality: full reference television. In: ITU-T Telecommunication Standardization Bureau (2004)Google Scholar
  13. 13.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15, 3440–3451 (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Wu, G., Sheikh, H.R., Simoncelli, E.P., Yang, E.H., Bovik, A.C.: Quality-aware images. IEEE Trans. Image Process. 15, 1680–1689 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, Z., Tao, J., Zheng, Z.: Reduced-reference image quality assessment based on average directional information. In: IEEE International Conference on Signal Processing, pp. 787–791 (2015)Google Scholar
  16. 16.
    Lin, Z., Zheng, Z., Guo, R., Pei, L.: Reduced-reference image quality assessment based on phase information in complex wavelet domain, pp. 966–971 (2015)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    Traoré, A., Carré, P., Olivier, C.: Quaternionic wavelet coefficients modeling for a reduced-reference metric. Sig. Process. Image Commun. 36, 127–139 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xinwen Xie
    • 1
    • 2
    • 3
  • Philippe Carré
    • 1
  • Clency Perrine
    • 1
  • Yannis Pousset
    • 1
  • Jianhua Wu
    • 2
  • Nanrun Zhou
    • 2
  1. 1.Université de Poitiers, XLIM InstituteFuturoscope-Chasseneuil CedexFrance
  2. 2.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  3. 3.Department of Electronic EngineeringJiujiang UniversityJiujiangChina

Personalised recommendations