Advertisement

Foreground Background Segmentation in Front of Changing Footage on a Video Screen

  • Gianni AlleboschEmail author
  • Maarten Slembrouck
  • Sanne Roegiers
  • Hiêp Quang Luong
  • Peter Veelaert
  • Wilfried Philips
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11182)

Abstract

In this paper, a robust approach for detecting foreground objects moving in front of a video screen is presented. The proposed method constructs a background model for every image shown on the screen, assuming these images are known up to an appearance transformation. This transformation is guided by a color mapping function, constructed in the beginning of the sequence. The foreground object is then segmented at runtime by comparing the input from the camera with a color mapped representation of the background image, by analysing both direct color and edge feature differences. The method is tested on challenging sequences, where the background screen displays photo-realistic videos. It is shown that the proposed method is able to produce accurate foreground masks, with obtained \(F_1\)-scores ranging from 85.61% to 90.74% on our dataset.

Keywords

Foreground background segmentation Video screen Changing background Color mapping 

Notes

Acknowledgements

The authors acknowledge the financial support from the Flemish Agency for Innovation and Entrepreneurship (Vlaams Agentschap Innoveren en Ondernemen) (imec.ICON project iPlay).

References

  1. 1.
    Allebosch, G., Van Hamme, D., Deboeverie, F., Veelaert, P., Philips, W.: Edge based foreground background estimation with interior/exterior classification. In: Proceedings of the 10th International Conference on Computer Vision Theory and Applications, vol. 3, pp. 369–375. SCITEPRESS (2015)Google Scholar
  2. 2.
    Allebosch, G., Van Hamme, D., Deboeverie, F., Veelaert, P., Philips, W.: C-EFIC: color and edge based foreground background segmentation with interior classification. In: Braz, J., et al. (eds.) VISIGRAPP 2015. CCIS, vol. 598, pp. 433–454. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29971-6_23CrossRefGoogle Scholar
  3. 3.
    Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  4. 4.
    Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR (2017)Google Scholar
  5. 5.
    Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518Google Scholar
  6. 6.
    He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988, October 2017Google Scholar
  7. 7.
    Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–43, June 2012Google Scholar
  8. 8.
    Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525, July 2017Google Scholar
  9. 9.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, June 1994Google Scholar
  10. 10.
    St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    St-Charles, P.L., Bilodeau, G.A., Bergevin, R.: A self-adjusting approach to change detection based on background word consensus. In: IEEE Winter Conference on Applications of Computer Vision WACV, pp. 990–997. Waikoloa Beach, Hawaii, January 2015Google Scholar
  12. 12.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Turkowski, K., Glassner, A.S.: Filters for common resampling tasks. In: Graphics Gems, pp. 147–165. Academic Press, New York (1990)CrossRefGoogle Scholar
  14. 14.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).  https://doi.org/10.1109/34.888718CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gianni Allebosch
    • 1
    • 2
    Email author
  • Maarten Slembrouck
    • 1
    • 2
  • Sanne Roegiers
    • 1
    • 2
  • Hiêp Quang Luong
    • 1
    • 2
  • Peter Veelaert
    • 1
    • 2
  • Wilfried Philips
    • 1
    • 2
  1. 1.TELIN-IPIGhent UniversityGentBelgium
  2. 2.imecLeuvenBelgium

Personalised recommendations