Efficient Attribute-Based Encryption with Blackbox Traceability

  • Shengmin XuEmail author
  • Guomin Yang
  • Yi Mu
  • Ximeng Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11192)


Traitor tracing scheme can be used to identify a decryption key is illegally used in public-key encryption. In CCS’13, Liu et al. proposed an attribute-based traitor tracing (ABTT) scheme with blackbox traceability which can trace decryption keys embedded in a decryption blackbox/device rather than tracing a well-formed decryption key. However, the existing ABTT schemes with blackbox traceability are based on composite order group and the size of the decryption key depends on the policies and the number of system users. In this paper, we revisit blackbox ABTT and introduce a new primitive called attribute-based set encryption (ABSE) based on key-policy ABE (KP-ABE) and identity-based set encryption (IBSE), which allows aggregation of multiple related policies and reduce the decryption key size in ABTT to be irrelevant to the number of system users. We present a generic construction of the ABTT scheme from our proposed ABSE scheme and fingerprint code based on the Boneh-Naor paradigm in CCS’08. We then give a concrete construction of the ABSE scheme which can be proven secure in the random oracle model under the decisional BDH assumption and a variant of q-BDHE assumption.


Public-key cryptosystems Attribute-based encryption Blackbox traceability 


  1. 1.
    Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols, C.: Attribute-based encryption schemes with constant-size ciphertexts. Theor. Comput. Sci. 422, 15–38 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). Scholar
  4. 4.
    Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: CCS, pp. 501–510 (2008)Google Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). Scholar
  6. 6.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS, pp. 89–98 (2006)Google Scholar
  7. 7.
    Guo, F., Mu, Y., Susilo, W.: Identity-based traitor tracing with short private key and short ciphertext. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 609–626. Springer, Heidelberg (2012). Scholar
  8. 8.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). Scholar
  9. 9.
    Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people leaking their keys by selling decryption devices on eBay. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 475–486. ACM (2013)Google Scholar
  10. 10.
    Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics Secur. 8(1), 76–88 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, Z., Cao, Z., Wong, D.S.: Traceable CP-ABE: how to trace decryption devices found in the wild. IEEE Trans. Inf. Forensics Secur. 10(1), 55–68 (2015)CrossRefGoogle Scholar
  12. 12.
    Liu, Z., Wong, D.S.: Practical attribute-based encryption: traitor tracing, revocation and large universe. Comput. J. 59(7), 983–1004 (2016)CrossRefGoogle Scholar
  13. 13.
    Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy attribute-based encryption with white-box traceability and public auditing in the cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 270–289. Springer, Cham (2015). Scholar
  14. 14.
    Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-policy attribute-based encryption supporting flexible attributes. IEEE Trans. Inf. Forensics Secur. 10(6), 1274–1288 (2015)CrossRefGoogle Scholar
  15. 15.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: CCS, pp. 463–474 (2013)Google Scholar
  16. 16.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). Scholar
  17. 17.
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). Scholar
  18. 18.
    Yu, G., Cao, Z., Zeng, G., Han, W.: Accountable ciphertext-policy attribute-based encryption scheme supporting public verifiability and nonrepudiation. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 3–18. Springer, Cham (2016). Scholar
  19. 19.
    Yu, G., Ma, X., Cao, Z., Zhu, W., Zeng, J.: Accountable multi-authority ciphertext-policy attribute-based encryption without key escrow and key abuse. In: CSS, pp. 337–351 (2017)Google Scholar
  20. 20.
    Zhang, Y., Li, J., Zheng, D., Chen, X., Li, H.: Accountable large-universe attribute-based encryption supporting any monotone access structures. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 509–524. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Cybersecurity and Cryptology, School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  2. 2.School of Information SystemsSingapore Management UniversitySingaporeSingapore
  3. 3.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina
  4. 4.Fujian Provincial Key Laboratory of Network Security and CryptologyFujian Normal UniversityFuzhouChina

Personalised recommendations