Advertisement

Imaging in the Management of Gynecologic Cancers

  • Teresa Meier
  • Tracy Sherertz
  • Eric Paulson
  • Sook Kien Ng
  • Jordan KharofaEmail author
Chapter
Part of the Practical Guides in Radiation Oncology book series (PGRO)

Abstract

In the management of gynecologic cancers, the physical exam remains an essential component of diagnostic staging and treatment response assessment. Despite this, advanced imaging can often offer complementary clinical information that may guide therapy or alter management. This chapter will provide a detailed description of how imaging is used in the current management of gynecologic cancers during the diagnostic, treatment, and follow-up phases of therapy with an emphasis on practical considerations for the radiation oncologist.

References

  1. 1.
    Rose PG, Adler LP, Rodriguez M, Faulhaber PF, Abdul-Karim FW, Miraldi F. Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17:41–5.CrossRefGoogle Scholar
  2. 2.
    Kusmirek J, Robbins J, Allen H, Barroilhet L, Anderson B, Sadowski EA. PET/CT and MRI in the imaging assessment of cervical cancer. Abdom Imaging. 2015;40:2486–511.CrossRefGoogle Scholar
  3. 3.
    Grigsby PW, Siegel BA, Dehdashti F. Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19:3745–9.CrossRefGoogle Scholar
  4. 4.
    Tran BN, Grigsby PW, Dehdashti F, Herzog TJ, Siegel BA. Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol. 2003;90:572–6.CrossRefGoogle Scholar
  5. 5.
    Qin Y, Peng Z, Lou J, Liu H, Deng F, Zheng Y. Discrepancies between clinical staging and pathological findings of operable cervical carcinoma with stage IB-IIB: a retrospective analysis of 818 patients. Aust N Z J Obstet Gynaecol. 2009;49:542–4.CrossRefGoogle Scholar
  6. 6.
    Lim K, Small W, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79:348–55.CrossRefGoogle Scholar
  7. 7.
    Barnes EA, Thomas G, Ackerman I, Barbera L, Letourneau D, Lam K, Makhani N, Sankreacha R. Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix. Int J Gynecol Cancer. 2007;17:821–6.CrossRefGoogle Scholar
  8. 8.
    Kim RY, Levy DS, Brascho DJ, Hatch KD. Uterine perforation during intracavitary application. Prognostic significance in carcinoma of the cervix. Radiology. 1983;147:249–51.CrossRefGoogle Scholar
  9. 9.
    Rotmensch J, Waggoner SE, Quiet C. Ultrasound guidance for placement of difficult intracavitary implants. Gynecol Oncol. 1994;54:159–62.CrossRefGoogle Scholar
  10. 10.
    Davidson MTM, Yuen J, D’Souza DP, Radwan JS, Hammond JA, Batchelar DL. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy. 2008;7:248–53.CrossRefGoogle Scholar
  11. 11.
    Van Dyk S, Narayan K, Fisher R, Bernshaw D. Conformal brachytherapy planning for cervical cancer using transabdominal ultrasound. Int J Radiat Oncol Biol Phys. 2009;75:64–70.CrossRefGoogle Scholar
  12. 12.
    Van Dyk S, Kondalsamy-Chennakesavan S, Schneider M, Bernshaw D, Narayan K. Comparison of measurements of the uterus and cervix obtained by magnetic resonance and transabdominal ultrasound imaging to identify the brachytherapy target in patients with cervix cancer. Int J Radiat Oncol Biol Phys. 2014;88:860–5.CrossRefGoogle Scholar
  13. 13.
    Stock RG, Chan K, Terk M, Dewyngaert JK, Stone NN, Dottino P. A new technique for performing Syed-Neblett template interstitial implants for gynecologic malignancies using transrectal-ultrasound guidance. Int J Radiat Oncol Biol Phys. 1997;37:819–25.CrossRefGoogle Scholar
  14. 14.
    Schmid MP, Pötter R, Brader P, Kratochwil A, Goldner G, Kirchheiner K, Sturdza A, Kirisits C. Feasibility of transrectal ultrasonography for assessment of cervical cancer. Strahlenther Onkol. 2013;189:123–8.CrossRefGoogle Scholar
  15. 15.
    Viswanathan AN, Szymonifka J, Tempany-Afdhal CM, O’Farrell DA, Cormack RA. A prospective trial of real-time magnetic resonance-guided catheter placement in interstitial gynecologic brachytherapy. Brachytherapy. 2013;12:240–7.CrossRefGoogle Scholar
  16. 16.
    Kapp KS, Stuecklschweiger GF, Kapp DS, Hackl AG. Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CT-assisted techniques. Radiother Oncol. 1992;24:137–46.CrossRefGoogle Scholar
  17. 17.
    Swanick CW, Castle KO, Vedam S, Munsell MF, Turner LM, Rauch GM, Jhingran A, Eifel PJ, Klopp AH. Comparison of computed tomography- and magnetic resonance imaging-based clinical target volume contours at brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2016;96:793–800.CrossRefGoogle Scholar
  18. 18.
    Viswanathan AN, Erickson B, Gaffney DK, et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90:320–8.CrossRefGoogle Scholar
  19. 19.
    Vick CW, Walsh JW, Wheelock JB, Brewer WH. CT of the normal and abnormal parametria in cervical cancer. AJR Am J Roentgenol. 1984;143:597–603.CrossRefGoogle Scholar
  20. 20.
    Haie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.CrossRefGoogle Scholar
  21. 21.
    Barillot I, Reynaud-Bougnoux A. The use of MRI in planning radiotherapy for gynaecological tumours. Cancer Imaging. 2006;6:100–6.CrossRefGoogle Scholar
  22. 22.
    Kharofa J, Morrow N, Kelly T, Rownd J, Paulson E, Rader J, Uyar D, Bradley W, Erickson B. 3-T MRI-based adaptive brachytherapy for cervix cancer: treatment technique and initial clinical outcomes. Brachytherapy. 2014;13:319–25.CrossRefGoogle Scholar
  23. 23.
    Sun W, Bhatia SK, Jacobson GM, Flynn RT, Kim Y. Target volume changes through high-dose-rate brachytherapy for cervical cancer when evaluated on high resolution (3.0 Tesla) magnetic resonance imaging. Pract Radiat Oncol. 2012;2:e101–6.CrossRefGoogle Scholar
  24. 24.
    Gill BS, Kim H, Houser CJ, et al. MRI-guided high–dose-rate intracavitary brachytherapy for treatment of cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys. 2015;91:540–7.CrossRefGoogle Scholar
  25. 25.
    Ulaner GA, Lyall A. Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics. 2013;33:1817–34.CrossRefGoogle Scholar
  26. 26.
    Schwarz JK, Siegel BA, Dehdashti F, Myerson RJ, Fleshman JW, Grigsby PW. Tumor response and survival predicted by post-therapy FDG-PET/CT in anal cancer. Int J Radiat Oncol Biol Phys. 2008;71:180–6.CrossRefGoogle Scholar
  27. 27.
    Schwarz JK, Siegel BA, Dehdashti F, Grigsby PW. Metabolic response on post-therapy FDG-PET predicts patterns of failure after radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2012;83:185–90.CrossRefGoogle Scholar
  28. 28.
    Schwarz JK, Lin LL, Siegel BA, Miller TR, Grigsby PW. 18-F-fluorodeoxyglucose-positron emission tomography evaluation of early metabolic response during radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2008;72:1502–7.CrossRefGoogle Scholar
  29. 29.
    Larson DM, Connor GP, Broste SK, Krawisz BR, Johnson KK. Prognostic significance of gross myometrial invasion with endometrial cancer. Obstet Gynecol. 1996;88:394–8.CrossRefGoogle Scholar
  30. 30.
    Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group study. Cancer. 1987;60:2035–41.CrossRefGoogle Scholar
  31. 31.
    Kinkel K, Kaji Y, Yu KK, Segal MR, Lu Y, Powell CB, Hricak H. Radiologic staging in patients with endometrial cancer: a meta-analysis. Radiology. 1999;212:711–8.CrossRefGoogle Scholar
  32. 32.
    Balleyguier C, Sala E, Da Cunha T, et al. Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol. 2011;21:1102–10.CrossRefGoogle Scholar
  33. 33.
    Antonsen SL, Jensen LN, Loft A, et al. MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer - a multicenter prospective comparative study. Gynecol Oncol. 2013;128:300–8.CrossRefGoogle Scholar
  34. 34.
    McComiskey MH, McCluggage WG, Grey A, Harley I, Dobbs S, Nagar HA. Diagnostic accuracy of magnetic resonance imaging in endometrial cancer. Int J Gynecol Cancer. 2012;22:1020–5.CrossRefGoogle Scholar
  35. 35.
    Emlik D, Kiresi D, Ozdemir S, Celik C, Karaköse S. Preoperative assessment of myometrial and cervical invasion in endometrial carcinoma: comparison of multi-section dynamic MR imaging using a three dimensional FLASH technique and T2-weighted MR imaging. J Med Imaging Radiat Oncol. 2010;54:202–10.CrossRefGoogle Scholar
  36. 36.
    Vasconcelos C, Félix A, Cunha TM. Preoperative assessment of deep myometrial and cervical invasion in endometrial carcinoma: comparison of magnetic resonance imaging and histopathologic evaluation. J Obstet Gynaecol. 2007;27:65–70.CrossRefGoogle Scholar
  37. 37.
    Rauch GM, Kaur H, Choi H, Ernst RD, Klopp AH, Boonsirikamchai P, Westin SN, Marcal LP. Optimization of MR imaging for pretreatment evaluation of patients with endometrial and cervical cancer. Radiographics. 2014;34:1082–98.CrossRefGoogle Scholar
  38. 38.
    Chapman CH, Prisciandaro JI, Maturen KE, Cao Y, Balter JM, McLean K, Jolly S. MRI-based evaluation of the vaginal cuff in brachytherapy planning: are we missing the target? Int J Radiat Oncol Biol Phys. 2016;95:743–50.CrossRefGoogle Scholar
  39. 39.
    Husby JA, Reitan BC, Biermann M, Trovik J, Bjørge L, Magnussen IJ, Salvesen ØO, Salvesen HB, Haldorsen IS. Metabolic tumor volume on 18F-FDG PET/CT improves preoperative identification of high-risk endometrial carcinoma patients. J Nucl Med. 2015;56:1191–8.CrossRefGoogle Scholar
  40. 40.
    Signorelli M, Crivellaro C, Buda A, Guerra L, Fruscio R, Elisei F, Dolci C, Cuzzocrea M, Milani R, Messa C. Staging of high-risk endometrial cancer with PET/CT and sentinel lymph node mapping. Clin Nucl Med. 2015;40:780–5.CrossRefGoogle Scholar
  41. 41.
    Crivellaro C, Signorelli M, Guerra L, De Ponti E, Pirovano C, Fruscio R, Elisei F, Montanelli L, Buda A, Messa C. Tailoring systematic lymphadenectomy in high-risk clinical early stage endometrial cancer: the role of 18F-FDG PET/CT. Gynecol Oncol. 2013;130:306–11.CrossRefGoogle Scholar
  42. 42.
    Belhocine T, De Barsy C, Hustinx R, Willems-Foidart J. Usefulness of (18)F-FDG PET in the post-therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging. 2002;29:1132–9.CrossRefGoogle Scholar
  43. 43.
    Iyer RB, Balachandran A, Devine CE. PET/CT and cross sectional imaging of gynecologic malignancy. Cancer Imaging.2007;7(Spec No A):S130–8.CrossRefGoogle Scholar
  44. 44.
    Sharma P, Kumar R, Singh H, Jeph S, Sharma DN, Bal C, Malhotra A. Carcinoma endometrium: role of 18-FDG PET/CT for detection of suspected recurrence. Clin Nucl Med. 2012;37:649–55.CrossRefGoogle Scholar
  45. 45.
    Kadkhodayan S, Shahriari S, Treglia G, Yousefi Z, Sadeghi R. Accuracy of 18-F-FDG PET imaging in the follow up of endometrial cancer patients: systematic review and meta-analysis of the literature. Gynecol Oncol. 2013;128:397–404.CrossRefGoogle Scholar
  46. 46.
    Queiroz MA, Kubik-Huch RA, Hauser N, Freiwald-Chilla B, von Schulthess G, Froehlich JM, Veit-Haibach P. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol. 2015;25:2222–30.CrossRefGoogle Scholar
  47. 47.
    Kataoka MY, Sala E, Baldwin P, Reinhold C, Farhadi A, Hudolin T, Hricak H. The accuracy of magnetic resonance imaging in staging of vulvar cancer: a retrospective multi-centre study. Gynecol Oncol. 2010;117:82–7.CrossRefGoogle Scholar
  48. 48.
    Sakae C, Yamaguchi K, Matsumura N, et al. Groin lymph node detection and sentinel lymph node biopsy in vulvar cancer. J Gynecol Oncol. 2016;27:e57.CrossRefGoogle Scholar
  49. 49.
    Robertson NL, Hricak H, Sonoda Y, Sosa RE, Benz M, Lyons G, Abu-Rustum NR, Sala E, Vargas HA. The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol Oncol. 2016;140:420–4.CrossRefGoogle Scholar
  50. 50.
    Cohn DE, Dehdashti F, Gibb RK, Mutch DG, Rader JS, Siegel BA, Herzog TJ. Prospective evaluation of positron emission tomography for the detection of groin node metastases from vulvar cancer. Gynecol Oncol. 2002;85:179–84.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Teresa Meier
    • 1
  • Tracy Sherertz
    • 2
  • Eric Paulson
    • 3
  • Sook Kien Ng
    • 4
  • Jordan Kharofa
    • 1
    Email author
  1. 1.University of CincinnatiCincinnatiUSA
  2. 2.University of California, San FranciscoSan FranciscoUSA
  3. 3.Medical College of WisconsinMilwaukeeUSA
  4. 4.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations