Advertisement

Anatomy and Target Delineation: Adjuvant and Definitive Radiation Therapy for Cervix Cancer

  • Karen S. H. LimEmail author
  • Meena Bedi
Chapter
Part of the Practical Guides in Radiation Oncology book series (PGRO)

Abstract

Cervix cancer remains a major contributor to mortality and morbidity worldwide, particularly in developing countries. Radiation therapy plays a critical role in the treatment of this disease both in the early stages (when adjuvant radiotherapy may be indicated) and in the more advanced stages where surgery is not an option. As more conformal radiotherapy techniques (such as intensity-modulated radiotherapy (IMRT)) are increasingly used, the accurate contouring of target volumes is essential in avoiding geographical target miss. This chapter focuses on target delineation for the purposes of external beam radiotherapy. Strategies to minimize or compensate for inter-fraction organ motion using an internal target volume (ITV) and planning target volume (PTV) margin suggestions are also considered.

Keywords

Cervix cancer External beam radiotherapy (EBRT) Target delineation Clinical target volume (CTV) Internal target volume (ITV) Lymph nodes 

References

  1. 1.
    Querleu D, Morrow CP. Classification of radical hysterectomy. Lancet Oncol. 2008;9(3):297–303.PubMedCrossRefGoogle Scholar
  2. 2.
    Sedlis A, Bundy BN, Rotman MZ, Lentz SS, Muderspach LI, Zaino RJ. A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol Oncol. 1999;73(2):177–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Peters WA 3rd, Liu PY, Barrett RJ 2nd, Stock RJ, Monk BJ, Berek JS, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol. 2000;18(8):1606–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Eifel P, Winter K, Morris M, Levenback C, Grigsby P, Cooper J, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 2004;22(5):872–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Rose PG, Bundy BN, Watkins EB, Thigpen JT, Deppe G, Maiman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340(15):1144–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Whitney CW, Sause W, Bundy BN, Malfetano JH, Hannigan EV, Fowler WC Jr, et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol. 1999;17(5):1339–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Sys Rev. 2010:1.  https://doi.org/10.1002/14651858.CD008285.
  8. 8.
    Tsai CS, Lai CH, Wang CC, Chang JT, Chang TC, Tseng CJ, et al. The prognostic factors for patients with early cervical cancer treated by radical hysterectomy and postoperative radiotherapy. Gynecol Oncol. 1999;75(3):328–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Tinga DJ, Timmer PR, Bouma J, Aalders JG. Prognostic significance of single versus multiple lymph node metastases in cervical carcinoma stage IB. Gynecol Oncol. 1990;39(2):175–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue T, Morita K. The prognostic significance of number of positive nodes in cervical carcinoma stages IB, IIA, and IIB. Cancer. 1990;65(9):1923–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Viswanathan AN, Lee H, Hanson E, Berkowitz RS, Crum CP. Influence of margin status and radiation on recurrence after radical hysterectomy in Stage IB cervical cancer. Int J Radiat Oncol Biol Phys. 2006;65(5):1501–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Rotman M, Sedlis A, Piedmonte MR, Bundy B, Lentz SS, Muderspach LI, et al. A phase III randomized trial of postoperative pelvic irradiation in Stage IB cervical carcinoma with poor prognostic features: follow-up of a Gynecologic Oncology Group Study. Int J Radiat Oncol Biol Phys. 2006;65(1):169–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Monk BJ, Wang J, Im S, Stock RJ, Peters WA 3rd, Liu PY, et al. Rethinking the use of radiation and chemotherapy after radical hysterectomy: a clinical-pathologic analysis of a Gynecologic Oncology Group/Southwest Oncology Group/Radiation Therapy Oncology Group trial. Gynecol Oncol. 2005;96(3):721–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Finlay MH, Ackerman I, Tirona RG, Hamilton P, Barbera L, Thomas G. Use of CT simulation for treatment of cervical cancer to assess the adequacy of lymph node coverage of conventional pelvic fields based on bony landmarks. Int J Radiat Oncol Biol Phys. 2006;64(1):205–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim RY, McGinnis LS, Spencer SA, Meredith RF, Jennelle RL, Salter MM. Conventional four-field pelvic radiotherapy technique without computed tomography-treatment planning in cancer of the cervix: potential geographic miss and its impact on pelvic control. Int J Radiat Oncol Biol Phys. 1995;31(1):109–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Jhingran A, Salehpour M, Sam M, Levy L, Eifel PJ. Vaginal motion and bladder and rectal volumes during pelvic intensity-modulated radiation therapy after hysterectomy. Int J Radiat Oncol Biol Phys. 2012;82(1):256–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Beadle BM, Jhingran A, Salehpour M, Sam M, Iyer RB, Eifel PJ. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int J Radiat Oncol Biol Phys. 2009;73(1):235–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Chan P, Dinniwell R, Haider MA, Cho YB, Jaffray D, Lockwood G, et al. Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study. Int J Radiat Oncol Biol Phys. 2008;70(5):1507–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Eminowicz G, Rompokos V, Stacey C, Hall L, McCormack M. Understanding the impact of pelvic organ motion on dose delivered to target volumes during IMRT for cervical cancer. Radiother Oncol. 2017;122(1):116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jürgenliemk-Schulz IM, Lagendijk JJW. Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol. 2008;88(2):241–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Lim K, Kelly V, Stewart J, Xie J, Cho YB, Moseley J, et al. Pelvic radiotherapy for cancer of the cervix: is what you plan actually what you deliver? Int J Radiat Oncol Biol Phys. 2009;74(1):304–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Mayr N, Koch R, Sammet S, Wang J, Montebello JF, Yuh W. Intrafractional organ motion of the uterus and tumor in cervical cancer patients: implications for radiation therapy planning and delivery. Int J Radiat Oncol Biol Phys. 2006;66:S164.CrossRefGoogle Scholar
  23. 23.
    Taylor A, Powell MEB. An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynaecological cancer. Radiother Oncol. 2008;88(2):250–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Ma DJ, Michaletz-Lorenz M, Goddu SM, Grigsby PW. Magnitude of interfractional vaginal cuff movement: implications for external irradiation. Int J Radiat Oncol Biol Phys. 2012;82(4):1439–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Jurgenliemk-Schulz IM, Toet-Bosma MZ, de Kort GA, Schreuder HW, Roesink JM, Tersteeg RJ, et al. Internal motion of the vagina after hysterectomy for gynaecological cancer. Radiother Oncol. 2011;98(2):244–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Georg P, Georg D, Hillbrand M, Kirisits C, Potter R. Factors influencing bowel sparing in intensity modulated whole pelvic radiotherapy for gynaecological malignancies. Radiother Oncol. 2006;80(1):19–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Mundt AJ, Lujan AE, Rotmensch J, Waggoner SE, Yamada SD, Fleming G, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002;52(5):1330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys. 2003;56(5):1354–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Lim K, Chan P, Dinniwell R, Fyles A, Haider M, Cho YB, et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70(1):126–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Small W Jr, Mell LK, Anderson P, Creutzberg C, De Los SJ, Gaffney D, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Lim K, Erickson B, Jurgenliemk-Schulz IM, Gaffney D, Creutzberg CL, Viswanathan A, et al. Variability in clinical target volume delineation for intensity modulated radiation therapy in 3 challenging cervix cancer scenarios. Pract Radiat Oncol. 2015;5(6):e557–e65.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lim K, Small W Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Heijkoop ST, Langerak TR, Quint S, Bondar L, Mens JW, Heijmen BJ, et al. Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT. Int J Radiat Oncol Biol Phys. 2014;90(3):673–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Mell LK, Kochanski JD, Roeske JC, Haslam JJ, Mehta N, Yamada SD, et al. Dosimetric predictors of acute hematologic toxicity in cervical cancer patients treated with concurrent cisplatin and intensity-modulated pelvic radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(5):1356–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Bell DJ, Pannu HK. Radiological assessment of gynecologic malignancies. Obstet Gynecol Clin N Am. 2011;38(1):45–68, vii.CrossRefGoogle Scholar
  36. 36.
    Nicolet V, Carignan L, Bourdon F, Prosmanne O. MR imaging of cervical carcinoma: a practical staging approach. Radiographics. 2000;20(6):1539–49.PubMedCrossRefGoogle Scholar
  37. 37.
    Xie W-J, Wu X, Xue R-L, Lin X-Y, Kidd EA, Yan S-M, et al. More accurate definition of clinical target volume based on the measurement of microscopic extensions of the primary tumor toward the uterus body in international federation of gynecology and obstetrics Ib-IIa squamous cell carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2015;91(1):206–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Sanuki N, Urabe S, Matsumoto H, Ono A, Komatsu E, Kamei N, et al. Evaluation of microscopic tumor extension in early-stage cervical cancer: quantifying subclinical uncertainties by pathological and magnetic resonance imaging findings. J Radiat Res. 2013;54(4):719–26.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Valentini AL, Gui B, Micco M, Giuliani M, Rodolfino E, Ninivaggi V, et al. MRI anatomy of parametrial extension to better identify local pathways of disease spread in cervical cancer. Diagn Interv Radiol. 2016;22(4):319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Höckel M, Horn L-C, Fritsch H. Association between the mesenchymal compartment of uterovaginal organogenesis and local tumour spread in stage IB-IIB cervical carcinoma: a prospective study. Lancet Oncol. 2005;6(10):751–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Nakanishi T, Wakai K, Ishikawa H, Nawa A, Suzuki Y, Nakamura S, et al. A comparison of ovarian metastasis between squamous cell carcinoma and adenocarcinoma of the uterine cervix. Gynecol Oncol. 2001;82(3):504–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim CH, Olson AC, Kim H, Beriwal S. Contouring inguinal and femoral nodes; how much margin is needed around the vessels? Pract Radiat Oncol. 2012;2(4):274–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63(5):1604–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Tanderup K, Fokdal LU, Sturdza A, Haie-Meder C, Mazeron R, van Limbergen E, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120(3):441–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Klopp AH, Moughan J, Portelance L, Miller BE, Salehpour MR, Hildebrandt E, et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer. Int J Radiat Oncol Biol Phys. 2013;86(1):83–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dawson LA, Kavanagh BD, Paulino AC, Das SK, Miften M, Li XA, et al. Radiation-associated kidney injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S108–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Fyles A, Keane TJ, Barton M, Simm J. The effect of treatment duration in the local control of cervix cancer. Radiother Oncol. 1992;25(4):273–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Petereit DG, Sarkaria JN, Chappell R, Fowler JF, Hartmann TJ, Kinsella TJ, et al. The adverse effect of treatment prolongation in cervical carcinoma. Int J Radiat Oncol Biol Phys. 1995;32(5):1301–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Perez CA, Grigsby PW, Castro-Vita H, Lockett MA. Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32(5):1275–88.PubMedCrossRefGoogle Scholar
  50. 50.
    Song S, Rudra S, Hasselle MD, Dorn PL, Mell LK, Mundt AJ, et al. The effect of treatment time in locally advanced cervical cancer in the era of concurrent chemoradiotherapy. Cancer. 2013;119(2):325–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Grogan M, Thomas GM, Melamed I, Wong FL, Pearcey RG, Joseph PK, et al. The importance of hemoglobin levels during radiotherapy for carcinoma of the cervix. Cancer. 1999;86(8):1528–36.PubMedCrossRefGoogle Scholar
  52. 52.
    Girinski T, Pejovic-Lenfant MH, Bourhis J, Campana F, Cosset JM, Petit C, et al. Prognostic value of hemoglobin concentrations and blood transfusions in advanced carcinoma of the cervix treated by radiation therapy: results of a retrospective study of 386 patients. Int J Radiat Oncol Biol Phys. 1989;16(1):37–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Barkati M, Fortin I, Mileshkin L, Bernshaw D, Carrier JF, Narayan K. Hemoglobin level in cervical cancer: a surrogate for an infiltrative phenotype. Int J Gynecol Cancer. 2013;23(4):724–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Bishop AJ, Allen PK, Klopp AH, Meyer LA, Eifel PJ. Relationship between low hemoglobin levels and outcomes after treatment with radiation or chemoradiation in patients with cervical cancer: has the impact of anemia been overstated? Int J Radiat Oncol Biol Phys. 2015;91(1):196–205.PubMedCrossRefGoogle Scholar
  55. 55.
    Serkies K, Badzio A, Jassem J. Clinical relevance of hemoglobin level in cervical cancer patients administered definitive radiotherapy. Acta Oncol. 2006;45(6):695–701.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Liverpool Cancer Therapy Centre, Department of Radiation OncologyLiverpool HospitalSydneyAustralia
  2. 2.Froedtert and the Medical College Clinical Cancer Center, Department of Radiation OncologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations