Advertisement

GIS Based Multi-criteria Analysis for Flood Risk Assessment: Case of Manouba Essijoumi Basin, NE Tunisia

  • Salwa SaidiEmail author
  • Anis Ghattassi
  • Brice Anselme
  • Salem Bouri
Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Effective flood risk management requires updated spatial information to ensure that the correct decisions are made. Therefore, developing appropriate responses to prevent surface water flooding is highly required. This paper aimed to map the spatial distribution of vulnerability of communities to flooding, the hazard and the socioeconomic factors including land use that affect people’s exposure to flooding and nature of settlements. In addition, it focused on weights determination using Intelligent Decision System (IDS) by the means of pairwise comparison approach. The results reveal high risk of Manouba Essijoumi in the Northern part and particularly in Sebkhat Essijoumi, corresponding to the urban areas with high rain intensity and especially spontaneous settlements. The results of this study allow a new vision to the urban management schema of the region and propose some efficient strategies of flood risk management.

Keywords

Flood risk GIS Multi-criteria assessment Management measures Essijoumi Sebkhat 

References

  1. 1.
    Zhang, S., Pan, B.: An urban storm-inundation simulation method based on GIS. J. Hydrol. 517, 260–268 (2014).  https://doi.org/10.1016/j.jhydrol.2014.05.044CrossRefGoogle Scholar
  2. 2.
    AUGT: L’urbanisation dans le Grand-Tunis, Tunisie, rapport inedit, p. 20 (2015)Google Scholar
  3. 3.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)CrossRefGoogle Scholar
  4. 4.
    Feizizadeh, B., Blaschke, T., Nazmfar, H.: GIS-based ordered weighted averaging and dempster Shafer methods for landslide susceptibility mapping in Urmia lake basin. Iran. Int. J. Digit. Earth (2012).  https://doi.org/10.1080/17538947.2012.749950CrossRefGoogle Scholar
  5. 5.
    Malczewski, J.: Visualization in multi-criteria spatial decision support systems. Geomatica 53, 139–147 (1999)Google Scholar
  6. 6.
    Malczewski, J.: On the use of weighted linear combination method in GIS: common and best practice approaches. Trans. GIS 4, 5–22 (2004)CrossRefGoogle Scholar
  7. 7.
    Marinoni, O.: Implementation of the analytical hierarchy process with VBA in Arc GIS. Comput. Geosci. 30(6), 637–646 (2004)CrossRefGoogle Scholar
  8. 8.
    Marinoni, O., Higgins, A., Hajkowicz, S., Collins, K.: The multiple criteria analysis tool (MCAT): a new software tool to support environmental investment decision making. Environ. Modell. Softw. 24(2), 153–164 (2009)CrossRefGoogle Scholar
  9. 9.
    Rothman, D.S., Romero-Lankao, P., Schweizer, V.J., Bee, B.A.: Challenges to adaptation: a fundamental concept for the shared socio-economic pathways and beyond part of special issue “A Framework for the Development of New Socio-economic Scenarios for Climate Change Research”. In: Nakicenovic, N., Lempert, R., Janetos, A. (eds.) Climatic Change (2013).  https://doi.org/10.1007/s10584-013-0907-0CrossRefGoogle Scholar
  10. 10.
    UNDHA: Internationally Agreed Glossary of Basic Terms Related to Disaster Management. DNA/93/36, United Nations, Department of Humanitarian Affairs, Geneva, Switzerland (1992)Google Scholar
  11. 11.
    Aronica, G.T., Candela, A., Fabio, P., Santoro, M.: Estimation of flood inundation probabilities using global hazard indexes based on hydrodynamic variables. Phys. Chem. Earth 42–44, 119–129 (2012)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Syvitski, J.P.M., Gao, S., Overeem, I., Kettner, A.J.: Socio-economic impacts on flooding: a 4000-year history of the yellow river, China. Ambio 41, 682–698 (2012).  https://doi.org/10.1007/s13280-012-0290-5CrossRefGoogle Scholar
  13. 13.
    Marnitez-Grana, A.M., Boski, T., Goy, J.L., Zazo, C., Dabrio, C.J.: Coastal-flood risk management in central Algarve: vulnerability and flood risk indices (South Portugal). Ecol. Ind. 71, 302–316 (2016)CrossRefGoogle Scholar
  14. 14.
    Ciro Aucelli, P.P., Di Paola, G., Incontri, P., Rizzo, A., Vilardo, G., Benassai, G.: Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain e southern Italy). Estuar. Costal Shelf Sci. 1–13 (2016)Google Scholar
  15. 15.
    Birkmann, J.: Measuring Vulnerability to Natural Hazards—Towards Disaster Resilient Societies. United Nations University Press, Tokyo, 450 p (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Salwa Saidi
    • 1
    • 2
    Email author
  • Anis Ghattassi
    • 1
  • Brice Anselme
    • 3
  • Salem Bouri
    • 4
  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.Water Energy and Environment LaboratoryENI-SfaxSfaxTunisia
  3. 3.UMR 8586 PRODIG LaboratoryUniversity of SorbonneParisFrance
  4. 4.Faculty of Sciences of SfaxSfaxTunisia

Personalised recommendations