Skip to main content

A Self-organized Method for Computing the Epidemic Threshold in Computer Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11193))

Abstract

In many cases, tainted information in a computer network can spread in a way similar to an epidemics in the human world. On the other had, information processing paths are often redundant, so a single infection occurrence can be easily “reabsorbed”. Randomly checking the information with a central server is equivalent to lowering the infection probability but with a certain cost (for instance processing time), so it is important to quickly evaluate the epidemic threshold for each node. We present a method for getting such information without resorting to repeated simulations. As for human epidemics, the local information about the infection level (risk perception) can be an important factor, and we show that our method can be applied to this case, too. Finally, when the process to be monitored is more complex and includes “disruptive interference”, one has to use actual simulations, which however can be carried out “in parallel” for many possible infection probabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aharony, A., Harris, A.B.: Absence of self-averaging and universal fluctuations in random systems near critical points. Phys. Rev. Lett. 77, 3700–3703 (1996). https://doi.org/10.1103/PhysRevLett.77.3700

    Article  Google Scholar 

  2. Bagnoli, F.: On damage-spreading transitions. J. Stat. Phys. 85, 151 (1996). https://doi.org/10.1007/BF02175559

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007). https://doi.org/10.1103/PhysRevE.76.061904

    Article  Google Scholar 

  4. Bagnoli, F., Palmerini, P., Rechtman, R.: Algorithmic mapping from criticality to self-organized criticality. Phys. Rev. E 55, 3970–3976 (1997). https://doi.org/10.1103/PhysRevE.55.3970

    Article  Google Scholar 

  5. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993). https://doi.org/10.1103/PhysRevLett.71.4083

    Article  Google Scholar 

  6. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987). https://doi.org/10.1103/PhysRevLett.59.381

    Article  Google Scholar 

  7. Carrion, A.: Very fast money: high-frequency trading on the NASDAQ. J. Financ. Mark. 16(4), 680–711 (2013). https://doi.org/10.1016/j.finmar.2013.06.005. High-Frequency Trading

    Article  Google Scholar 

  8. Chew, C., Eysenbach, G.: Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak. PLoS One 5(11), e14118 (2010). https://doi.org/10.1371/journal.pone.0014118

    Article  Google Scholar 

  9. Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984). https://doi.org/10.1103/PhysRevLett.53.311

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457, 1012–1014 (2009). https://doi.org/10.1038/nature07634

    Article  Google Scholar 

  11. Hinrichsen, H., Weitz, J.S., Domany, E.: An algorithm-independent definition of damage spreading–application to directed percolation. J. Stat. Phys. 88(3), 617–636 (1997). https://doi.org/10.1023/B:JOSS.0000015165.83255.b7

    Article  MATH  Google Scholar 

  12. Massaro, E., Bagnoli, F.: Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method. Phys. Rev. E 90, 052817 (2014). https://doi.org/10.1103/PhysRevE.90.052817

    Article  MATH  Google Scholar 

  13. Menkveld, A.J.: High frequency trading and the new market makers. J. Financ. Mark. 16(4), 712–740 (2013). https://doi.org/10.1016/j.finmar.2013.06.006

    Article  Google Scholar 

  14. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001). https://doi.org/10.1103/PhysRevLett.86.3200

    Article  Google Scholar 

  15. Scanfeld, D., Scanfeld, V., Larson, E.L.: Dissemination of health information through social networks: Twitter and antibiotics. Am. J. Infect. Control. 38(3), 182–188 (2010). https://doi.org/10.1016/j.ajic.2009.11.004

    Article  Google Scholar 

  16. Yang, L.X., Yang, X., Liu, J., Zhu, Q., Gan, C.: Epidemics of computer viruses: a complex-network approach. Appl. Math. Comput. 219(16), 8705–8717 (2013). https://doi.org/10.1016/j.amc.2013.02.031

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Bagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagnoli, F., Bellini, E., Massaro, E. (2018). A Self-organized Method for Computing the Epidemic Threshold in Computer Networks. In: Bodrunova, S. (eds) Internet Science. INSCI 2018. Lecture Notes in Computer Science(), vol 11193. Springer, Cham. https://doi.org/10.1007/978-3-030-01437-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01437-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01436-0

  • Online ISBN: 978-3-030-01437-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics