A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity

  • Xerxes D. ArsiwallaEmail author
  • Daniel Pacheco
  • Alessandro Principe
  • Rodrigo Rocamora
  • Paul Verschure
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11140)


A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain’s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity.


Computational neuroscience Brain networks Complexity measures Functional connectivity 



This work is supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach”, (ERC-2013- ADG 341196).


  1. 1.
    Arsiwalla, X.D., Verschure, P.F.M.J.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, August 2013Google Scholar
  2. 2.
    Arsiwalla, X.D., Betella, A., Bueno, E.M., Omedas, P., Zucca, R., Verschure, P.F.: The dynamic connectome: A tool for large-scale 3d reconstruction of brain activity in real-time. In: ECMS, pp. 865–869 (2013)Google Scholar
  3. 3.
    Arsiwalla, X.D., et al.: Connectomics to semantomics: addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)CrossRefGoogle Scholar
  4. 4.
    Arsiwalla, X.D., Herreros, I., Moulin-Frier, C., Sanchez, M., Verschure, P.F.: Is Consciousness a Control Process? pp. 233–238. IOS Press, Amsterdam (2016)Google Scholar
  5. 5.
    Arsiwalla, X.D., Herreros, I., Verschure, P.: On three categories of conscious machines. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 389–392. Springer, Cham (2016). Scholar
  6. 6.
    Arsiwalla, X.D., Mediano, P.A., Verschure, P.F.: Spectral modes of network dynamics reveal increased informational complexity near criticality. Procedia Comput. Sci. 108, 119–128 (2017)CrossRefGoogle Scholar
  7. 7.
    Arsiwalla, X.D., Moulin-Frier, C., Herreros, I., Sanchez-Fibla, M., Verschure, P.F.: The morphospace of consciousness. arXiv preprint arXiv:1705.11190 (2017)
  8. 8.
    Arsiwalla, X.D., Verschure, P.: Computing information integration in brain networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 136–146. Springer, Cham (2016). Scholar
  9. 9.
    Arsiwalla, X.D., Verschure, P.: Why the brain might operate near the edge of criticality. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 326–333. Springer, Cham (2017). Scholar
  10. 10.
    Arsiwalla, X.D., Verschure, P.: Measuring the complexity of consciousness. Front. Neurosci. 12, 424 (2018)CrossRefGoogle Scholar
  11. 11.
    Arsiwalla, X.D., Verschure, P.F.M.J.: High integrated information in complex networks near criticality. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 184–191. Springer, Cham (2016). Scholar
  12. 12.
    Arsiwalla, X.D., Verschure, P.F.: The global dynamical complexity of the human brain network. Appl. Netw. Sci. 1(1), 16 (2016)CrossRefGoogle Scholar
  13. 13.
    Arsiwalla, X.D.: Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction. Front. Neuroinformatics 9, 2 (2015)CrossRefGoogle Scholar
  14. 14.
    Ay, N.: Information geometry on complexity and stochastic interaction. Entropy 17(4), 2432–2458 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)CrossRefGoogle Scholar
  16. 16.
    Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Barrett, A.B., Seth, A.K.: Practical measures of integrated information for time-series data. PLoS Comput. Biol. 7(1), e1001052 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Betella, A., et al.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 23:1–23:7. ACM, New York (2014)Google Scholar
  19. 19.
    Betella, A., et al.: Brainx3: embodied exploration of neural data. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 37:1–37:4. ACM, New York (2014)Google Scholar
  20. 20.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  21. 21.
    Edlund, J.A., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 7(10), e1002236 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Griffith, V., Koch, C.: Quantifying synergistic mutual information. In: Prokopenko, M. (ed.) Guided Self-Organization: Inception. ECC, vol. 9, pp. 159–190. Springer, Heidelberg (2014). Scholar
  23. 23.
    Oizumi, M., Albantakis, L., Tononi, G.: From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5), e1003588 (2014)CrossRefGoogle Scholar
  24. 24.
    Omedas, P., et al.: XIM-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 26:1–26:4. ACM, New York (2014)Google Scholar
  25. 25.
    Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Netw. Comput. Neural Syst. 16(1), 35–54 (2005)CrossRefGoogle Scholar
  26. 26.
    Tegmark, M.: Improved measures of integrated information. arXiv preprint arXiv:1601.02626 (2016)
  27. 27.
    Tononi, G.: An information integration theory of consciousness. BMC Neuroscience 5(1), 42 (2004)CrossRefGoogle Scholar
  28. 28.
    Tononi, G.: Integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150(2–3), 56–90 (2012)Google Scholar
  29. 29.
    Tononi, G., Sporns, O.: Measuring information integration. BMC Neuroscience 4(1), 31 (2003)CrossRefGoogle Scholar
  30. 30.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)CrossRefGoogle Scholar
  31. 31.
    Wennekers, T., Ay, N.: Stochastic interaction in associative nets. Neurocomputing 65, 387–392 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xerxes D. Arsiwalla
    • 1
    • 2
    • 4
    Email author
  • Daniel Pacheco
    • 1
    • 2
    • 4
  • Alessandro Principe
    • 3
  • Rodrigo Rocamora
    • 3
  • Paul Verschure
    • 2
    • 4
    • 5
  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.Institute for BioEngineering of CataloniaBarcelonaSpain
  3. 3.Hospital del MarBarcelonaSpain
  4. 4.Barcelona Institue of Science and TechnologyBarcelonaSpain
  5. 5.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations