Advertisement

An Original Neural Network for Pulmonary Tuberculosis Diagnosis in Radiographs

  • Junyu Liu
  • Yang Liu
  • Cheng Wang
  • Anwei Li
  • Bowen MengEmail author
  • Xiangfei Chai
  • Panli Zuo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11140)

Abstract

Tuberculosis (TB) is a widespread and highly contagious disease that may lead serious harm to patient health. With the development of neural network, there is increasingly attention to apply deep learning on TB diagnosis. Former works validated the feasibility of neural networks in this task, but still suffer low accuracy problem due to lack of samples and complexity of radiograph information. In this work, we proposed an end-to-end neural network system for TB diagnosis, combining preprocessing, lung segmentation, feature extraction and classification. We achieved accuracy of 0.961 in our labeled dataset, 0.923 and 0.890 on Shenzhen and Montgomery Public Dataset respectively, demonstrating our work outperformed the state-of-the-art methods in this area.

Keywords

Tuberculosis Classification DNN 

Notes

Acknowledgement

We would like to thank Huiying Medical Technology (Beijing) Co., Ltd. for providing essential resource and support for us.

References

  1. 1.
    World Health Organization (WHO): Global tuberculosis report (2017). http://www.who.int/tb/publications/global_report/en/. Accessed 26 May 2018
  2. 2.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates Inc. (2012)Google Scholar
  3. 3.
    Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)CrossRefGoogle Scholar
  4. 4.
    Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection, pp. 2999–3007. In: IEEE Computer Society (2017)Google Scholar
  5. 5.
    He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  6. 6.
    Bar, Y., Diamant, I., Wolf, L., et al.: Deep learning with non-medical training used for chest pathology identification. In: Medical Imaging 2015: Computer-Aided Diagnosis, p. 94140V (2015)Google Scholar
  7. 7.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88690-7_3CrossRefGoogle Scholar
  8. 8.
    Lopes, U.K., Valiati, J.F.: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol. Med. 89, 135–143 (2017)CrossRefGoogle Scholar
  9. 9.
    Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Computer Society, pp. 1–9 (2014)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition, pp. 770–778. IEEE Computer Society (2015)Google Scholar
  11. 11.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)Google Scholar
  12. 12.
    Islam, M.T., Aowal, M.A., Minhaz, A.T., et al.: Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv (2017)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  14. 14.
    Drozdzal, M., et al.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G. et al. (eds.) Deep Learning and Data Labeling for Medical ApplicationsGoogle Scholar
  15. 15.
    Jaeger, S., Karargyris, A., Antani, S., et al.: Detecting tuberculosis in radiographs using combined lung masks. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2012(4), 4978–4981 (2012)Google Scholar
  16. 16.
    Hwang, S., et al.: A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical Imaging 2016: Computer-Aided Diagnosis, p. 97852W. International Society for Optics and Photonics (2016)Google Scholar
  17. 17.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)CrossRefGoogle Scholar
  18. 18.
    Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhou, B., et al.: Learning deep features for discriminative localization. In: Computer Vision and Pattern Recognition, pp. 2921–2929. IEEE (2016)Google Scholar
  20. 20.
    Stefan, J., et al.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med. Surg. 4(6), 475–477 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Junyu Liu
    • 1
  • Yang Liu
    • 1
  • Cheng Wang
    • 1
  • Anwei Li
    • 1
  • Bowen Meng
    • 1
    Email author
  • Xiangfei Chai
    • 1
  • Panli Zuo
    • 1
  1. 1.Huiying Medical Technology (Beijing) Co., Ltd.BeijingChina

Personalised recommendations