Advertisement

Spiking Neural Network Controllers Evolved for Animat Foraging Based on Temporal Pattern Recognition in the Presence of Noise on Input

  • Chama Bensmail
  • Volker Steuber
  • Neil Davey
  • Borys WróbelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11139)

Abstract

We evolved spiking neural network controllers for simple animats, allowing for these networks to change topologies and weights during evolution. The animats’ task was to discern one correct pattern (emitted from target objects) amongst other different wrong patterns (emitted from distractor objects), by navigating towards targets and avoiding distractors in a 2D world. Patterns were emitted with variable silences between signals of the same pattern in the attempt of creating a state memory. We analyse the network that is able to accomplish the task perfectly for patterns consisting of two signals, with 4 interneurons, maintaining its state (although not infinitely) thanks to the recurrent connections.

Keywords

Spiking neural networks Temporal pattern recognition Animat Adaptive exponential integrate and fire 

Notes

Acknowledgments

This work was supported by the Polish National Science Center (project EvoSN, UMO-2013/08/M/ST6/00922).

References

  1. 1.
    Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)CrossRefGoogle Scholar
  2. 2.
    Bensmail, C., Steuber, V., Davey, N., Wróbel, B.: Evolving spiking neural networks to control animats for temporal pattern recognition and foraging. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)Google Scholar
  3. 3.
    Bialek, W., Rieke, F., de Ruyter van Steveninck, R., Warland, D.: Reading a neural code. Science 252, 1854–1857 (1991)CrossRefGoogle Scholar
  4. 4.
    Damper, R.I., French, R.L.B.: Evolving spiking neuron controllers for phototaxis and phonotaxis. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2003. LNCS, vol. 2611, pp. 616–625. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36605-9_56CrossRefGoogle Scholar
  5. 5.
    Decharms, R.C., Zador, A.: Neural representation and the cortical code. Ann. Rev. Neurosci. 23, 613–647 (2000)CrossRefGoogle Scholar
  6. 6.
    Florian, R.V.: Biologically inspired neural networks for the control of embodied agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Technical report Coneural-03-03 (2003)Google Scholar
  7. 7.
    Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)CrossRefGoogle Scholar
  8. 8.
    Huxter, J., Burgess, N., O’Keefe, J.: Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828–832 (2003)CrossRefGoogle Scholar
  9. 9.
    Isaacson, J.S.: Odor representations in mammalian cortical circuits. Curr. Opin. Neurobiol. 20, 328–331 (2010)CrossRefGoogle Scholar
  10. 10.
    Joris, P., Yin, T.C.: A matter of time: internal delays in binaural processing. Trends Neurosci. 30, 70–78 (2007)CrossRefGoogle Scholar
  11. 11.
    Laurent, G.: Dynamical representation of odors by oscillating and evolving neural assemblies. Trends in Neurosci. 19, 489–496 (1996)CrossRefGoogle Scholar
  12. 12.
    Maex, R., Steuber, V.: The first second: models of short-term memory traces in the brain. Neural Netw. 22, 1105–1112 (2009)CrossRefGoogle Scholar
  13. 13.
    Reeve, R., Webb, B., Horchler, A., Indiveri, G., Quinn, R.: New technologies for testing a model of cricket phonotaxis on an outdoor robot. Rob. Auton. Syst. 51, 41–54 (2005)CrossRefGoogle Scholar
  14. 14.
    Rieke, F.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  15. 15.
    Rost, T., Ramachandran, H., Nawrot, M.P., Chicca, E.: A neuromorphic approach to auditory pattern recognition in cricket phonotaxis. In: European Conference on Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2013)Google Scholar
  16. 16.
    Steuber, V., De Schutter, E.: Rank order decoding of temporal parallel fibre input patterns in a complex Purkinje cell model. Neurocomputing 44, 183–188 (2002)CrossRefGoogle Scholar
  17. 17.
    Steuber, V., Willshaw, D.: A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J. Comput. Neurosci. 17, 149–164 (2004)CrossRefGoogle Scholar
  18. 18.
    Steuber, V., Willshaw, D., Van Ooyen, A.: Generation of time delays: simplified models of intracellular signalling in cerebellar Purkinje cells. Netw.: Comput. Neural Syst. 17, 173–191 (2006)CrossRefGoogle Scholar
  19. 19.
    Steuber, V., Willshaw, D.J.: Adaptive leaky integrator models of cerebellar Purkinje cells can learn the clustering of temporal patterns. Neurocomputing 26, 271–276 (1999)CrossRefGoogle Scholar
  20. 20.
    Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381, 520 (1996)CrossRefGoogle Scholar
  21. 21.
    Webb, B.: Using robots to model animals: a cricket test. Rob. Auton. Syst. 16, 117–134 (1995)CrossRefGoogle Scholar
  22. 22.
    Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing signals with a mixed paradigm, inspired by gene regulatory networks and spiking neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST, vol. 134, pp. 135–149. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06944-9_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Chama Bensmail
    • 1
  • Volker Steuber
    • 2
  • Neil Davey
    • 2
  • Borys Wróbel
    • 1
    • 3
    Email author
  1. 1.Evolving Systems LaboratoryAdam Mickiewicz University in PoznanPoznanPoland
  2. 2.Center for Computer Science and Informatics ResearchUniversity of HertfordshireHertfordshireUK
  3. 3.IOPANSopotPoland

Personalised recommendations