Advertisement

Proteomic Responses to Cold Stress

  • Towseef Mohsin Bhat
  • Sana Choudhary
  • Nirala Ramchiary
Chapter

Abstract

One of the most excellent techniques in molecular biology and biochemistry is proteomics used extensively for protein profiling in a variety of plant species facing stress conditions. Alteration in protein expression occurs as a result of cold stress in the form of upregulation of already prevailing protein pool by the formation of novel proteins functionally associated with plants’ antioxidative defense mechanism. Efficient and well-studied protein extraction protocols and modern techniques for identification of novel proteins have been methodized in different plant species at the tissue level, organ level, or whole plant level for proper cognizance of cold stress realization and intracellular stress signal transduction monitoring. The best mechanism to study in depth proteome at the subcellular level could accomplish abundant information details about the mechanism of stress response as it corresponds to the possible connection between protein abundance and stress permissiveness. This book chapter summarizes the overall significant contributions related to cold stress on plants for better understanding of these particular stress tolerance mechanisms at the protein level.

Keywords

Two-dimensional electrophoresis (2DE) Two-dimensional difference gel electrophoresis (2D-DIGE) Mass spectrometry (MS) MALDI TOF-MS iTRAQ proteomics Posttranslational modifications 

References

  1. Abdalla KO, Rafudeen MS (2012) Analysis of the nuclear proteome of the resurrection plant Xerophyta viscosa in response to dehydration stress using iTRAQ with 2DLC and tandem mass spectrometry. J Proteome 75(8):2361–2374CrossRefGoogle Scholar
  2. Ashworth EN (1992) Formation and spread of ice in plant tissues. Hort Rev 13:215–255Google Scholar
  3. Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36(5):652–663CrossRefGoogle Scholar
  4. Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205:48–54CrossRefGoogle Scholar
  5. Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27(1):507–528CrossRefGoogle Scholar
  6. Buts K, Michielssens S, Hertog ML, Hayakawa E, Cordewener J, America AH, Nicolai BM, Carpentier SC (2014) Improving the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: a case study on apple fruit. J Proteome 105:31–45CrossRefGoogle Scholar
  7. Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R (2011) Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Phytochemistry 72(10):1162–1172CrossRefGoogle Scholar
  8. Cappadona S, Baker PR, Cutillas PR, Heck AJ, van Breukelen B (2012) Current challenges in software solutions for mass spectrometry-based quantitative proteomics. Amino Acids 43(3):1087–1108CrossRefGoogle Scholar
  9. Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, He G (2010) Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol Breed 26(1):1–17CrossRefGoogle Scholar
  10. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci 101(42):15243–15248Google Scholar
  11. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172CrossRefGoogle Scholar
  12. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N et al (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011–1027.  https://doi.org/10.1007/s00216-012-5918-6CrossRefPubMedGoogle Scholar
  13. Fanucchi F, Alpi E, Olivieri S, Cannistraci CV, Bachi A, Alpi A, Alession M (2012) Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level. Biochim Biophys Acta 1824(6):813–825CrossRefGoogle Scholar
  14. Flinn CL, Ashworth EN (1994) Blueberry flower-bud hardiness is not estimated by differential thermal analysis. J Am Soc Hortic Sci 119(2):295–298Google Scholar
  15. Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF (2013) Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L. Int J Mol Sci 14(3):4912–4933CrossRefGoogle Scholar
  16. Franks F (1985) Complex aqueous systems at subzero temperatures. In: Properties of water in foods. Springer, Dordrecht, pp 497–509CrossRefGoogle Scholar
  17. Gao L, Yan X, Li X, Guo G, Hu Y, Ma W, Yan Y (2011) Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE). Phytochemistry 72(10):1180–1191CrossRefGoogle Scholar
  18. Gharechahi J, Alizadeh H, Naghavi MR, Sharifi G (2014) A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 41(6):3897–3905CrossRefGoogle Scholar
  19. Gharechahi J, Sharifi G, Komatsu S, Salekdeh GH (2016) Proteomic analysis of crop plants under low temperature: a review of cold responsive proteins. In: Agricultural proteomics, vol 2. Springer, Cham, pp 97–127CrossRefGoogle Scholar
  20. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717CrossRefGoogle Scholar
  21. Gu X, Gao Z, Zhuang W, Qiao Y, Wang X, Mi L, Zhang Z, Lin Z (2013) Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature. J Plant Physiol 170(7):696–706CrossRefGoogle Scholar
  22. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684CrossRefGoogle Scholar
  23. Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7(8):1293–1302CrossRefGoogle Scholar
  24. Heidarvand L, Amiri RM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32(3):419–431CrossRefGoogle Scholar
  25. Higgins SJ, Hames BD (eds) (1999) Protein expression: a practical approach (No. 202). Oxford University Press, New YorkGoogle Scholar
  26. Hlaváčková I, Vítámvás P, Šantrůček J, Kosová K, Zelenková S, Prášil IT, Kodíček M (2013) Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor. Int J Mol Sci 14(4):8000–8024CrossRefGoogle Scholar
  27. Holman JD, Dasari S, Tabb DL (2013) Informatics of protein and posttranslational modification detection via shotgun proteomics. In: Proteomics for biomarker discovery. Humana Press, Totowa, pp 167–179CrossRefGoogle Scholar
  28. Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH (2016) Translational genomics for plant breeding with the genome sequence explosion. Plant Biotechnol J 14(4):1057–1069CrossRefGoogle Scholar
  29. Körner C (2016) Plant adaptation to cold climates. F1000Research 5(F1000 Faculty Rev):2769CrossRefGoogle Scholar
  30. Kosová K, Vítámvás P, Planchon S, Renaut J, Vanková R, Prášil IT (2013) Proteome analysis of cold response in spring and winter wheat (Triticum aestivum) crowns reveals similarities in stress adaptation and differences in regulatory processes between the growth habits. J Proteome Res 12(11):4830–4845CrossRefGoogle Scholar
  31. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25(7):873–882CrossRefGoogle Scholar
  32. Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166(1):1–11CrossRefGoogle Scholar
  33. Levitt J (1980) Responses of plants to environmental stress, Volume 1. In: Chilling, freezing, and high temperature stresses. Academic Press, New YorkGoogle Scholar
  34. Liu JY, Men JL, Chang MC, Feng CP, Yuan LG (2017) iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteome 156:75–84CrossRefGoogle Scholar
  35. Matros A, Kaspar S, Witzel K, Mock HP (2011) Recent progress in liquid chromatography-based separation and label-free quantitative plant proteomics. Phytochemistry 72(10):963–974CrossRefGoogle Scholar
  36. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14(3):5312–5337CrossRefGoogle Scholar
  37. Nakaminami K, Matsui A, Nakagami H, Minami A, Nomura Y, Tanaka M, Morosawa T, Ishida J, Takahashi S, Uemura M, Shirasu K, Seki M (2014) Analysis of differential expression patterns of mRNA and protein during cold-and de-acclimation in Arabidopsis. Mol Cell Proteomics 13(12):3602–3611.  https://doi.org/10.1074/mcp.M114.039081CrossRefPubMedPubMedCentralGoogle Scholar
  38. Neilson KA, Mariani M, Haynes PA (2011) Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11(9):1697–1706CrossRefGoogle Scholar
  39. Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB et al (2011) iTRAQ−based analysis of changes in the cassava root proteome reveals pathways associated with post−harvest physiological deterioration. Plant J 67:145–156.  https://doi.org/10.1111/j.1365-313X.2011.04582.xCrossRefPubMedGoogle Scholar
  40. Pascovici D, Gardiner DM, Song X, Breen E, Solomon PS, Keighley T, Molloy MP (2013) Coverage and consistency: bioinformatics aspects of the analysis of multirun iTRAQ experiments with wheat leaves. J Proteome Res 12(11):4870–4881CrossRefGoogle Scholar
  41. Pearce AK, Humphrey TC (2001) Integrating stress-response and cell-cycle checkpoint pathways. Trends Cell Biol 11(10):426–433CrossRefGoogle Scholar
  42. Pearce RS, Fuller MP (2001) Freezing of barley studied by infrared video thermography. Plant Physiol 125(1):227–240CrossRefGoogle Scholar
  43. Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494(7436):266CrossRefGoogle Scholar
  44. Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2012) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32(14):1807–1818CrossRefGoogle Scholar
  45. Rinalducci S, Egidi MG, Karimzadeh G, Jazii FR, Zolla L (2011) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32(14):1807–1818CrossRefGoogle Scholar
  46. Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367(6459):133–138CrossRefGoogle Scholar
  47. Sánchez R, Flores A, Cejudo FJ (2006) Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223(5):901–909CrossRefGoogle Scholar
  48. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30–43CrossRefGoogle Scholar
  49. Shi Y, Ding Y, Yang S (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant SciGoogle Scholar
  50. Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8(1):19CrossRefGoogle Scholar
  51. Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4(8):1122–1133CrossRefGoogle Scholar
  52. Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). S Afr J Bot 77(1):160–169CrossRefGoogle Scholar
  53. Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteome 71(4):391–411CrossRefGoogle Scholar
  54. Uvackova L, Skultety L, Bekesova S, McClain S, Hajduch M (2013a) The MSE-proteomic analysis of gliadins and glutenins in wheat grain identifies and quantifies proteins associated with celiac disease and baker’s asthma. J Proteome 93:65–73CrossRefGoogle Scholar
  55. Uvackova L, Skultety L, Bekesova S, McClain S, Hajduch M (2013b) MSE based multiplex protein analysis quantified important allergenic proteins and detected relevant peptides carrying known epitopes in wheat grain extracts. J Proteome Res 12(11):4862–4869CrossRefGoogle Scholar
  56. Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: roles of calmodulin-regulated proteins. Front Plant Sci 6:809CrossRefGoogle Scholar
  57. Walsh GM, Rogalski JC, Klockenbusch C, Kast J (2010) Mass spectrometry-based proteomics in biomedical research: emerging technologies and future strategies. Expert Rev Mol Med 12:e30CrossRefGoogle Scholar
  58. Wienkoop S, Baginsky S, Weckwerth W (2010) Arabidopsis thaliana as a model organism for plant proteome research. J Proteome 73(11):2239–2248CrossRefGoogle Scholar
  59. Xuan J, Song Y, Zhang H, Liu J, Guo Z, Hua Y (2013) Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One 8(9):e75705CrossRefGoogle Scholar
  60. Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Sun W (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10(17):3117–3129CrossRefGoogle Scholar
  61. Zhang W, Zhang H, Ning L, Li B, Bao M (2016) Quantitative proteomic analysis provides novel insights into cold stress responses in Petunia seedlings. Front Plant Sci 7:136PubMedPubMedCentralGoogle Scholar
  62. Zheng B-B, Fang Y-N, Pan Z-Y, Sun L, Deng X-X, Grosser JW et al (2014) iTRAQ-based quantitative proteomics analysis revealed alterations of carbohydrate metabolism pathways and mitochondrial proteins in a male sterile cybrid pummelo. J Proteome Res 13:2998–3015.  https://doi.org/10.1021/pr500126gCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Towseef Mohsin Bhat
    • 1
  • Sana Choudhary
    • 2
  • Nirala Ramchiary
    • 1
  1. 1.Laboratory of Translational and Evolutionary Genomics, School of Life Sciences Jawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Genetics Section, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations