Advertisement

CBF-Dependent and CBF-Independent Transcriptional Regulation of Cold Stress Responses in Plants

  • N. Yahia
  • Shabir Hussain Wani
  • Vinay KumarEmail author
Chapter

Abstract

Low temperature or cold is one of the most important stress factors that control and limit seed germination, young seedling development, growth and development of the adult plant as well as plant distribution worldwide. There are several reports of altered gene expression in plants in response to and during cold acclimation and conclude that cold-responsive genes provide the biochemical and physiological changes necessary for growth and development at low temperature. Indeed, when the plants are exposed to cold stress, cold- or chilling-tolerant plants reprogramme their transcriptome in response to cold adaptation. It is an established fact that the ICE-1-CBF transcriptional cascade plays crucial role in cold acclimation in diverse plant species, and through transgenic approaches the genetic manipulation of CBF pathway can improve cold tolerance of resultant transgenics. On the other hand, studies have revealed that, besides transcriptional regulation, plants employ diverse post-transcriptional regulatory mechanisms to modulating their gene expression patterns during cold acclimation.

Keywords

Dependent CBF CBF-independent transcriptional pathway Transcriptional cascade 

References

  1. Agarwal M, Hao Y, Kapoor A et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645PubMedCrossRefPubMedCentralGoogle Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefPubMedCentralGoogle Scholar
  3. Azar S, San-Clemente H, Marque G et al (2011) Bioinformatic prediction of the AP2/ERF family genes in Eucalyptus grandis: focus on the CBF family. BMC Proc 5(Suppl7):165CrossRefGoogle Scholar
  4. Badawi M, Danyluk J, Boucho B et al (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Gen Genomics 277:533–554CrossRefGoogle Scholar
  5. Benedict C, Skinner JS, Meng R (2006) The CBF1-dependent low temperature-signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272PubMedCrossRefPubMedCentralGoogle Scholar
  6. Canella D, Gilmour SJ, Kuhn LA et al (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochem Biophys Acta 1799:454–462PubMedPubMedCentralGoogle Scholar
  7. Carvallo MA, Pino MT, Jeknić Z et al (2011) A comparison of the low temperature transcriptome and CBF regulon of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807–3819PubMedPubMedCentralCrossRefGoogle Scholar
  8. Champ KI, Febres VJ, Moore GA (2007) The role of CBF transcriptional activators in two Citrus species (Poncirus and Citrus) with contrasting levels of freezing tolerance. Physiol Plant 129:529–541CrossRefGoogle Scholar
  9. Chen Y, Chen Z, Kang J et al (2013) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Report 31:87–97PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefGoogle Scholar
  11. Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61CrossRefGoogle Scholar
  12. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451Google Scholar
  13. Chinnusamy V, Zhu JK, Sunkar K (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cui N, Sun X, Sun M et al (2015) Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa). Mol Breed 35:214.  https://doi.org/10.1007/s11032-015-0402-6CrossRefGoogle Scholar
  16. Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefPubMedCentralGoogle Scholar
  17. Erimina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810CrossRefGoogle Scholar
  18. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gamboa MC, Rasmussen-Poblete S, Valenzuela PD et al (2007) Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiol Biochem 45:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gao MJ, Allard G, Byass L et al (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul 83:175–198CrossRefGoogle Scholar
  22. Gilmour SJ, Zarka DG, Stockinger EJ et al (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gosal SS, Wani SH, Manjit SK (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54CrossRefGoogle Scholar
  25. Guo HM, Li ZC, Zhang H (2011) Cloning of cotton CBF gene for cold tolerance and its expression in transgenic tobacco. Acta Agron Sin 37:286–293Google Scholar
  26. Guy C (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223CrossRefGoogle Scholar
  27. Guy CL, Niemi KJ, Bramble R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A 82:3673–3677PubMedPubMedCentralCrossRefGoogle Scholar
  28. Haake V, Cook D, Riechmann JL et al (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hannah MA, Wiese D, Freund S et al (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hao X, Wang B, Wang L et al (2018) Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Sci Hortic 240:354–368CrossRefGoogle Scholar
  31. He X, Sambe MAN, Zhuo C et al (2015) A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. Plant Mol Biol 87:645–654PubMedCrossRefPubMedCentralGoogle Scholar
  32. Heidarvand L, Amiri LM (2010) What happens in plant molecular responses to cold stress? Acta Physiol Plant 32:419–431CrossRefGoogle Scholar
  33. Houde M, Dallaire S, N’Dong D et al (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J 2:381–387PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jaglo KR, Kleff S, Amundsen KL et al (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jaglo-Ottosen KR, Glimour SJ, Zarka DG et al (1998) Arabidopsis CBF 1 overexpression induced COR genes and enhances freezing tolerance. Science 280:104–106PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jeknic Z, Pillman KA, Dhillon T et al (2014) Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol Biol 84:67–82PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jofuku KD, den-Boer BG, Van Montagu M et al (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225PubMedPubMedCentralCrossRefGoogle Scholar
  38. Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029.  https://doi.org/10.3389/fpls.2016.01029CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kayal EW, Navarro M, Marque G et al (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57(10):2455–2469PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kitashiba H, Matsuda N, Ishizaka T et al (2002) Isolation of genes similar to DREB1/CBF from sweet cherry (Prunus avium L.). J Jap Soc Hort Sci 71:651–657CrossRefGoogle Scholar
  41. Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and crosstalk. Trends Plant Sci 6:262–267PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147PubMedCrossRefGoogle Scholar
  43. Lamb CJ, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175PubMedPubMedCentralCrossRefGoogle Scholar
  45. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49:199–222CrossRefGoogle Scholar
  46. Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  47. Liu Y, Jiang H, Zhao Z et al (2011) Abscisic acid is involved in brassinosteroids-induced chilling tolerance in the suspension cultured cells from Chorispora bungeana. J Plant Physiol 168:853–862PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ma Y, Dai X, Xu Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221PubMedCrossRefPubMedCentralGoogle Scholar
  49. Magome H, Yamaguchi S, Hanada A et al (2004) dwarf and delayed flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37:720–729PubMedCrossRefPubMedCentralGoogle Scholar
  50. Marozsan-Toth Z, Vashegyi I, Galiba G et al (2015) The cold response of CBF genes in barley is regulated by distinct signaling mechanisms. J Plant Physiol 181:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  51. Maruyama K, Sakuma Y, Kasuga M et al (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993PubMedCrossRefPubMedCentralGoogle Scholar
  52. Maruyama K, Todaka D, Mizoi J et al (2012) Identification of cis-acting promoter elements in cold- and dehydration- induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49PubMedCrossRefPubMedCentralGoogle Scholar
  53. Medina J, Bargues M, Terol J et al (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469PubMedPubMedCentralCrossRefGoogle Scholar
  54. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A (m) 2 in Triticum monococcum. Mol Gen Genomics 275:193–203CrossRefGoogle Scholar
  55. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  56. Murata N, Los A (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nair P, Shasany AK, Khan F et al (2018) Differentially expressed peroxidases from Artemisia annua and their responses to various abiotic stresses. Plant Mol Biol Report 36:295.  https://doi.org/10.1007/s11105-018-1078-yCrossRefGoogle Scholar
  58. Navarro M (2009) Etude fonctionnelle de gènes de facteurs de transcription CBFs impliqués dans la tolérance au froid chez l’Eucalyptus. In: Thèse de doctorat. Université Toulouse III – Paul Sabatier, p 155Google Scholar
  59. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  60. Okamuro JK, Caster B, Villarroel R et al (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94:7076–7081PubMedPubMedCentralCrossRefGoogle Scholar
  61. Patade VY, Khatri D, Kumari M et al (2013) Cold tolerance in osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. Springerplus 2:117.  https://doi.org/10.1186/2193-1801-2-117CrossRefPubMedPubMedCentralGoogle Scholar
  62. Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pino MT, Skinner JS, Jeknic Z et al (2008) Ectopic AtCBF1over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406PubMedCrossRefPubMedCentralGoogle Scholar
  64. Qin F, Sakuma Y, Li J et al (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sanghera GS, Wani SH, Hussain W et al (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43PubMedPubMedCentralCrossRefGoogle Scholar
  66. Savitch LV, Allard G, Seki M et al (2005) The effect of over-expression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539PubMedCrossRefPubMedCentralGoogle Scholar
  67. Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  68. Shi J, Zuoa J, Zhoua F et al (2018a) Low-temperature conditioning enhances chilling tolerance and reduces damage in cold-stored eggplant (Solanumm elongena L.) fruit. Postharvest Biol Technol 141:33–38CrossRefGoogle Scholar
  69. Shi Y, Ding Y, Yang S (2018b) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23:623–637PubMedCrossRefPubMedCentralGoogle Scholar
  70. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedPubMedCentralCrossRefGoogle Scholar
  72. Skinner JS, Szűcs P, Von Zitzewitz J et al (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842PubMedCrossRefPubMedCentralGoogle Scholar
  73. Soltész A, Smedley M, Vashegyi I et al (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64:1849–1862PubMedPubMedCentralCrossRefGoogle Scholar
  74. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584CrossRefGoogle Scholar
  75. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sung DY, Kaplan F, Lee KJ et al (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tayeh N, Bahman N, Sellier H et al (2013) A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genomics 14:814.  https://doi.org/10.1186/1471-2164-14-814CrossRefPubMedPubMedCentralGoogle Scholar
  78. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599PubMedCrossRefPubMedCentralGoogle Scholar
  79. Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93PubMedPubMedCentralCrossRefGoogle Scholar
  80. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  81. Touati A, Yahia N, Fyad-Lamèche FZ (2016) Morphometric variability and biochemical analysis of growth seedlings under salt stress in tomato (Lycopersicon esculentum Mill.) cultivars. Mol Plant Breed 7:1–9Google Scholar
  82. Uemura M, Raymond AJ, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze induced lesions. Plant Physiol 109:15–30PubMedPubMedCentralCrossRefGoogle Scholar
  83. Uemura M, Tominaga Y, Nakagawara C et al (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89CrossRefGoogle Scholar
  84. Vergnolle C, Vaultier MN, Taconnat L et al (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139:1217–1233PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang K, Bai ZY, Liang QY et al (2018) Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genomics 19:319.  https://doi.org/10.1186/s12864-018-4706-xCrossRefPubMedPubMedCentralGoogle Scholar
  86. Wani SH, Kumar V (2015) Plant stress tolerance: engineering ABA: a potent Phytohormone. Transcriptomics 3:1000113.  https://doi.org/10.4172/2329-8936.1000113CrossRefGoogle Scholar
  87. Wani SH, Sah SK (2014) Biotechnology and abiotic stress tolerance in rice. J Rice Res 2:e105.  https://doi.org/10.4172/jrr.1000e105CrossRefGoogle Scholar
  88. Wani SH, Kumar V, Shriram V et al (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176CrossRefGoogle Scholar
  89. Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211PubMedPubMedCentralCrossRefGoogle Scholar
  90. Xiao H, Siddiqua M, Braybrook S et al (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421PubMedCrossRefPubMedCentralGoogle Scholar
  91. Xiao H, Tattersall EAR, Siddiqua MK et al (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10PubMedPubMedCentralGoogle Scholar
  92. Xing C, Liu Y, Zhao L et al (2018) A novel MYB transcription factor regulates AsA synthesis and effects cold tolerance. Plant Cell Environ.  https://doi.org/10.1111/pce.13387
  93. Xiong Y, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224:878–888PubMedCrossRefPubMedCentralGoogle Scholar
  94. Xiong L, Lee B, Ishitani M et al (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signalling in Arabidopsis. Genes Dev 15:1971–1984PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yahia N, Fyad-Lamèche FZ (2003) Evaluation de la variabilité de jeunes plants de Medicago soumis à un régime de basse température. Acta Bot Gallica 150:3–17CrossRefGoogle Scholar
  96. Yahia N, Ali N, Habouche D et al (2015) Changes of peroxidase activities under cold stress in annuals populations of Medicago. Mol Plant Breed 6:1–9Google Scholar
  97. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yamazaki T, Kawamura Y, Uemura M (2009) Extracellular freezing-induced mechanical stress and surface area regulation on the plasma membrane in cold-acclimated plant cells. Plant Signal Behav 4:231–233PubMedPubMedCentralCrossRefGoogle Scholar
  99. Zang Q, Chen Q, Wang S et al (2017) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7:24.  https://doi.org/10.1186/s12284-014-0024-3CrossRefGoogle Scholar
  100. Zhao RR, Sheng JP, Lv SN et al (2011) Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Technol 62:121–126CrossRefGoogle Scholar
  101. Zhao M, Liua W, Xiaa X et al (2014) Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Physiol Plant 152:115–129PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Genetics and Plant Breeding Laboratory, Department of Biology, Faculty of Sciences of Nature and LifeUniversity of OranOranAlgeria
  2. 2.Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
  3. 3.Department of BiotechnologyModern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPuneIndia

Personalised recommendations