Hormonal Regulation of Cold Stress Response

  • Mohammad Arif Ashraf
  • Abidur RahmanEmail author


Phytohormones play an important role in every aspect of plant growth and development. Studies of hormonal biosynthesis, signaling, and transportation pathway facilitate our understanding for the basic developmental mechanisms. As a sessile organism, inability of plants to escape the adverse conditions is manifested through the alteration of growth parameters. These growth parameters are mainly regulated through phytohormone content, perception, and transport. Hormonal perception and regulation as a response of biotic and abiotic stresses have been studied from the model plant Arabidopsis thaliana to crop plants. In the era of uncertain climate condition, temperature stress (both high and low) has become a major limiting factor for plant growth and crop productivity. Recent progress in hormonal study revealed important roles of majority of the phytohormones in low-temperature stress response. However, the mechanistic explanation of responses of different hormones under cold stress is far from understood. In this chapter, we tried to provide a comprehensive summary of our existing knowledge linking hormones and cold stress and discuss about the possible mechanistic basis of response pathways and the future research direction that may help to develop cold-resistant crop varieties to meet the upcoming global food crisis.


Cold stress Phytohormones 



Research in Abidur Rahman’s lab is funded by several grants by JSPS Kakenhi and Iwate University. Arif Ashraf was supported by MEXT fellowship.


  1. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor–dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824PubMedCrossRefGoogle Scholar
  4. Bakshi A, Shemansky JM, Chang C, Binder BM (2015) History of research on the plant hormone ethylene. J Plant Growth Regul 34:809–827CrossRefGoogle Scholar
  5. Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143CrossRefGoogle Scholar
  8. Belkhadir Y, Yang L, Hetzel J, Dangl JL, Chory J (2014) The growth–defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem Sci 39:447–456PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427PubMedCentralCrossRefPubMedGoogle Scholar
  10. Burg SP (1968) Ethylene, plant senescence and abscission. Plant Physiol 43:1503PubMedPubMedCentralCrossRefGoogle Scholar
  11. Catalá R, López-Cobollo R, Castellano MM, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342PubMedPubMedCentralCrossRefGoogle Scholar
  12. Catalá R, Salinas J (2015) The Arabidopsis ethylene overproducer mutant eto1-3 displays enhanced freezing tolerance. Plant Signal Behav 10:e989768PubMedPubMedCentralCrossRefGoogle Scholar
  13. Catinot J, Buchala A, Abou-Mansour E, Métraux J-P (2008) Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett 582:473–478PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen C-C, Liang C-S, Kao A-L, Yang C-C (2010) HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61:3305–3320PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1769:295–307CrossRefGoogle Scholar
  16. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451CrossRefGoogle Scholar
  19. Ciardi JA, Deikman J, Orzolek MD (1997) Increased ethylene synthesis enhances chilling tolerance in tomato. Physiol Plant 101:333–340CrossRefGoogle Scholar
  20. Clouse SD (2015) A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J Plant Growth Regul 34:828–844CrossRefGoogle Scholar
  21. Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197–199PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cuevas JC et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. The Arabidopsis Book 9:e0156PubMedPubMedCentralCrossRefGoogle Scholar
  25. Divi UK, Rahman T, Krishna P (2016) Gene expression and functional analyses in brassinosteroidmediated stress tolerance. Plant Biotechnol J 14:419–432PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dong C-J, Li L, Shang Q-M, Liu X-Y, Zhang Z-G (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700PubMedCrossRefPubMedCentralGoogle Scholar
  27. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397PubMedPubMedCentralCrossRefGoogle Scholar
  28. Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480PubMedPubMedCentralCrossRefGoogle Scholar
  29. Earley K et al (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293PubMedPubMedCentralCrossRefGoogle Scholar
  30. Enders TA, Strader LC (2015) Auxin activity: past, present, and future. Am J Bot 102:180–196PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810CrossRefGoogle Scholar
  32. Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58:9–17CrossRefGoogle Scholar
  33. Fu X, Liu H, Xu J, Tang J, Shang X (2014) Primary metabolite mobilization and hormonal regulation during seed dormancy release in Cornus japonica var. chinensis. Scand J For Res 29:542–551CrossRefGoogle Scholar
  34. Gomez-Roldan V et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189PubMedCrossRefPubMedCentralGoogle Scholar
  35. Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J 12:601–612PubMedCrossRefGoogle Scholar
  36. Gusta L, Trischuk R, Weiser C (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318CrossRefGoogle Scholar
  37. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614PubMedCrossRefGoogle Scholar
  39. Hong JH et al (2017) A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 170:102–113 e114.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hsieh T-H, Lee J-T, Yang P-T, Chiu L-H, Y-y C, Wang Y-C, Chan M-T (2002) Heterology expression of the ArabidopsisC-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369PubMedCrossRefGoogle Scholar
  43. Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J (2017) ABA is involved in regulation of cold stress response in Bermudagrass. Front Plant Sci 8:1613PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ioio RD et al (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384CrossRefGoogle Scholar
  45. Jaillais Y, Belkhadir Y, Balsemão-Pires E, Dangl JL, Chory J (2011) Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc Natl Acad Sci 108:8503–8507PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jaillais Y, Vert G (2016) Brassinosteroid signaling and BRI1 dynamics went underground. Curr Opin Plant Biol 33:92–100PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jeon J, Cho C, Lee MR, Van Binh N, Kim J (2016) CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 regulate lateral root development and response to cold stress in Arabidopsis. Plant Cell. Scholar
  48. Jeon J, Kim J (2012) Arabidopsis response regulator 1 (ARR1) and Arabidopsis histidine phosphotransfer protein 2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol. Scholar
  49. Jeon J et al (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jiang YP et al (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145PubMedCrossRefGoogle Scholar
  51. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth Regul 24:319–344CrossRefGoogle Scholar
  56. Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Development 145:dev149344PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376PubMedCrossRefGoogle Scholar
  58. Kosová K et al (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kuromori T et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci 107:2361–2366PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lavy M, Estelle M (2016) Mechanisms of auxin signaling. Development 143:3226–3229PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lee B-h, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee HG, Seo PJ (2015) The MYB96–HHP module integrates cold and abscisic acid signaling to activate the CBF–COR pathway in Arabidopsis. Plant J 82:962–977PubMedCrossRefPubMedCentralGoogle Scholar
  63. Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10:545–559PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938PubMedCrossRefPubMedCentralGoogle Scholar
  66. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222PubMedCrossRefPubMedCentralGoogle Scholar
  67. Löfke C, Zwiewka M, Heilmann I, Van Montagu MC, Teichmann T, Friml J (2013) Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci 110:3627–3632PubMedCrossRefPubMedCentralGoogle Scholar
  68. Majláth I et al (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314PubMedCrossRefPubMedCentralGoogle Scholar
  69. Maruyama K et al (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mashiguchi K et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci 108:18512–18517PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mega R et al (2015) Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.). Sci Rep 5:13819PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miller CO, Skoog F, Okumura F, Von Saltza M, Strong F (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division1, 2. J Am Chem Soc 78:1375–1380CrossRefGoogle Scholar
  73. Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid1. J Am Chem Soc 77:1392–1392CrossRefGoogle Scholar
  74. Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337PubMedPubMedCentralCrossRefGoogle Scholar
  75. Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560PubMedCrossRefPubMedCentralGoogle Scholar
  76. Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  77. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195PubMedCrossRefPubMedCentralGoogle Scholar
  78. Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M (2006) Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ 64:542–547CrossRefGoogle Scholar
  79. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5Google Scholar
  80. Oliveira G, Peñuelas J (2005) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179–191CrossRefGoogle Scholar
  81. Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  82. Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004PubMedPubMedCentralCrossRefGoogle Scholar
  83. Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev 24:2093–2104PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338PubMedCrossRefPubMedCentralGoogle Scholar
  85. Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ruyter-Spira C, Al-Babili S, Van Der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  88. Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J (2018) Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc Natl Acad Sci:201721760. Scholar
  89. Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577PubMedCrossRefGoogle Scholar
  90. Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shan DP et al (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129PubMedPubMedCentralGoogle Scholar
  93. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  94. Shi Y, Yang S (2014) ABA regulation of the cold stress response in plants. In: Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 337–363Google Scholar
  95. Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefPubMedCentralGoogle Scholar
  97. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417PubMedPubMedCentralCrossRefGoogle Scholar
  98. Singh I, Kumar U, Singh S, Gupta C, Singh M, Kushwaha S (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18:229–236PubMedPubMedCentralCrossRefGoogle Scholar
  99. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedPubMedCentralCrossRefGoogle Scholar
  100. Stepanova AN et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191PubMedCrossRefPubMedCentralGoogle Scholar
  101. Strader LC, Bartel B (2008) A new path to auxin. Nat Chem Biol 4:337PubMedCrossRefPubMedCentralGoogle Scholar
  102. Street IH et al (2016) Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 143:3982–3993PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sun X et al (2016) Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Sci Rep 6:24066PubMedPubMedCentralCrossRefGoogle Scholar
  104. Takatsuka H, Umeda M (2015) Epigenetic control of cell division and cell differentiation in the root apex. Front Plant Sci 6:1178PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tao Y et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedPubMedCentralCrossRefGoogle Scholar
  106. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599CrossRefGoogle Scholar
  107. Tivendale ND, Cohen JD (2015) Analytical history of auxin. J Plant Growth Regul 34:708–722CrossRefGoogle Scholar
  108. Tsuchisaka A et al (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003PubMedPubMedCentralCrossRefGoogle Scholar
  109. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30PubMedPubMedCentralCrossRefGoogle Scholar
  110. Umehara M et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195PubMedCrossRefPubMedCentralGoogle Scholar
  111. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. Tomato DC3000. Mol Plant-Microbe Interact 20:955–965PubMedCrossRefPubMedCentralGoogle Scholar
  112. Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168PubMedCrossRefPubMedCentralGoogle Scholar
  113. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber JJ (1998a) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427PubMedPubMedCentralGoogle Scholar
  115. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998b) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci 95:4766–4771PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wang L et al (2017) Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics 18:538PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang L, Wu J (2013) The essential role of jasmonic acid in plant–herbivore interactions–using the wild tobacco Nicotiana attenuata as a model. J Genet Genomics 40:597–606PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162–176CrossRefGoogle Scholar
  120. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xia J, Zhao H, Liu W, Li L, He Y (2009a) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211CrossRefGoogle Scholar
  122. Xia X-J et al (2009b) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814PubMedPubMedCentralCrossRefGoogle Scholar
  123. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117PubMedCrossRefPubMedCentralGoogle Scholar
  124. Xie Y et al (2018) An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytol 218:201–218PubMedCrossRefPubMedCentralGoogle Scholar
  125. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215:770–778PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251PubMedCrossRefPubMedCentralGoogle Scholar
  128. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yamamuro C, Zhu J-K, Yang Z (2016) Epigenetic modifications and plant hormone action. Mol Plant 9:57–70PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yang C, Lu X, Ma B, Chen S-Y, Zhang J-S (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8:495–505PubMedCrossRefPubMedCentralGoogle Scholar
  131. Yang Z, Cao S, Zheng Y, Jiang Y (2012) Combined salicylic acid and ultrasound treatments for reducing the chilling injury on peach fruit. J Agric Food Chem 60:1209–1212PubMedCrossRefPubMedCentralGoogle Scholar
  132. Zhang F, Wang L, Ko EE, Shao K, Qiao H (2018) Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. Plant Cell. Scholar
  133. Zhang F et al (2017) EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc Natl Acad Sci 114:10274–10279PubMedCrossRefPubMedCentralGoogle Scholar
  134. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J (2014) CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85:259–275PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhu J-Y, Sae-Seaw J, Wang Z-Y (2013) Brassinosteroid signalling. Development 140:1615–1620PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhu J et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci 105:4945–4950PubMedCrossRefPubMedCentralGoogle Scholar
  139. Zhu J et al (2015) Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol 56:727–736PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.United Graduate School of Agricultural Sciences, Iwate UniversityMoriokaJapan
  2. 2.Department of Plant Bio SciencesFaculty of Agriculture, Iwate UniversityMoriokaJapan
  3. 3.Agri-Innovation Center, Iwate UniversityMoriokaJapan

Personalised recommendations