Advertisement

Full Affine Equivariance and Weak Natural Transformations in Numerical Analysis—The Case of B-Series

  • Olivier VerdierEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 267)

Abstract

Many algorithms in numerical analysis are affine equivariant: they are immune to changes of affine coordinates. This is because those algorithms are defined using affine invariant constructions. There is, however, a crucial ingredient missing: most algorithms are in fact defined regardless of the underlying dimension. As a result, they are also invariant with respect to non-invertible affine transformation from spaces of different dimensions. We formulate this property precisely: these algorithms fall short of being natural transformations between affine functors. We give a precise definition of what we call a weak natural transformation between functors, and illustrate the point using examples coming from numerical analysis, in particular B-Series.

Keywords

Affine Allegory Equivariance Natural transformation 

MSC codes

18B10 58J70 65L06 

References

  1. 1.
    Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (New Series) (2010).  https://doi.org/10.1090/S0273-0979-10-01278-4MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D., Falk, R., Winther, R.: Finite element exterior calculus, homo- logical techniques, and applications. Acta Numer. 15, 1–155 (2006).  https://doi.org/10.1017/S0962492906210018MathSciNetCrossRefGoogle Scholar
  3. 3.
    Awodey, S.: Category Theory. Oxford Logic Guides. OUP, Oxford (2010). ISBN: 9780191612558Google Scholar
  4. 4.
    Chu, M.T.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008). ISSN: 0962-4929; 1474-0508/e.  https://doi.org/10.1017/S0962492906340019MathSciNetCrossRefGoogle Scholar
  5. 5.
    Freyd, P.J., Scedrov, A.: Categories, Allegories. North-Holland Mathematical Library. Elsevier Science (1990). ISBN: 9780080887012Google Scholar
  6. 6.
    Goodman, J., Weare, J.: Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5(1), 65–80 (2010).  https://doi.org/10.2140/camcos.2010.5.65MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations. Springer series in computational mathematics. Springer (2006). ISBN: 9783540306634Google Scholar
  8. 8.
    McLachlan, R.I., Modin, K., Munthe-Kaas, H., Verdier, O.: B-series methods are exactly the affine equivariant methods. Numerische Matematik (2015).  https://doi.org/10.1007/s00211-015-0753-2. arXiv:1409.1019MathSciNetCrossRefGoogle Scholar
  9. 9.
    McLachlan, R.I., Modin, K., Verdier, O.: Collective Lie–Poisson integrators on R3. IMA J. Numer. Anal. 35(2), 546–560 (2015).  https://doi.org/10.1093/imanum/dru013. arXiv:1307.2387CrossRefGoogle Scholar
  10. 10.
    McLachlan, R.I., Modin, K., Verdier, O.: Collective symplectic integrators. Nonlinearity 27(6), 1525 (2014).  https://doi.org/10.1088/0951-7715/27/6/1525. arXiv:1308.6620MathSciNetCrossRefGoogle Scholar
  11. 11.
    McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numerica 11, 341–434 (2002). ISSN: 0962-4929; 1474-0508/e.  https://doi.org/10.1017/S0962492902000053
  12. 12.
    Munthe-Kaas, H., Verdier, O.: Aromatic Butcher series. Found. Comput. Math. 16(1), 183–215 (2016).  https://doi.org/10.1007/s10208-015-9245-0. arXiv:1308.5824MathSciNetCrossRefGoogle Scholar
  13. 13.
    Munthe-Kaas, H., Verdier, O.: Integrators on homogeneous spaces: isotropy choice and connections. Found. Comput. Math. (2015).  https://doi.org/10.1007/s10208-015-9267-7. arXiv:1402.6981MathSciNetCrossRefGoogle Scholar
  14. 14.
    Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-spline techniques. Mathematics and Visualization. Springer, Berlin, Heidelberg (2013). ISBN: 9783662049198Google Scholar
  15. 15.
    Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997). ISBN: 9780898719574Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computing, Mathematics and PhysicsWestern Norway University of Applied SciencesBergenNorway
  2. 2.Department of MathematicsKTH - Royal Institute of TechnologyStockholmSweden

Personalised recommendations